搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子辐照聚合物带电特性多参数共同作用的数值模拟

封国宝 王芳 曹猛

引用本文:
Citation:

电子辐照聚合物带电特性多参数共同作用的数值模拟

封国宝, 王芳, 曹猛

Numerical simulation of multi-combined effects of parameters on polymer charging characteristics due to electron irradiation

Feng Guo-Bao, Wang Fang, Cao Meng
PDF
导出引用
  • 电子辐照聚合物样品的带电特性是扫描电子显微镜成像、电子束探针微分析以及空间器件辐照效应等领域的一个重要研究课题. 通过建立基于蒙特卡罗方法的电子散射和时域有限差分法的电子输运的数值模型, 并采用高效的多线程并行计算, 模拟了电子非透射辐照聚合物样品的带电特性, 得到了带电稳态下的样品底部泄漏电流密度、表面负电位以及样品总电荷密度等带电特征量受入射电子能量、入射电流密度、样品材料的电子迁移率、样品厚度等相关参数共同作用的影响. 结果表明, 一个参数的变化使表面负电位增强时, 其他参数对负电位的影响将增强. 样品的带电稳态特征量在同一个电流平衡的模式下受参数影响的变化是单调的. 当电流平衡模式发生变化时, 如在入射电子能量较低的条件下, 样品内部的总电荷量会随着样品厚度的增大而先增加后减小, 出现局部极大值. 样品底部的泄漏电流密度随着入射电流密度的增大而近线性成比例地增大. 研究结果对于揭示电子辐照聚合物的带电规律及微观机理、预测不同条件下的样品带电状态具有重要科学意义.
    Charging characteristics of an insulator specimen due to non-penetrated electron irradiation have been attracting a great deal of attention in the fields such as scanning electron microscopy, electron probe analysis, and space irradiation. In this paper, we use a numerical simulation model based on Monte Carlo method for investigating the electron scattering. The elastic scattering is calculated with the Mott cross-section, and the inelastic scattering is simulated with Penn model and the fast secondary electron model according to the primary energy. The charge transport caused by the build-in electric field and charge density gradient is calculated with finite-difference time-domain method. Multi-combined effect of correlative parameters on charging characteristics is investigated by efficient multithreading parallel computing. During the irradiation, the landing energy of primary electrons decreases due to the negative surface potential, which makes the secondary electron yield increase. Variations of secondary electron current and sample current are presented to verify the validity of the simulation model by comparing with existing experimental results. Evolutions of leakage current, surface potential and internal space charge quantity are calculated under different conditions of incident electron current, primary energy and sample thickness. The results are presented in contour maps with different multi-parameter combinations, primary energy and sample mobility, primary energy and sample thickness, and primary energy and incident current. The balance state of charging will be determined by leakage current under conditions of a larger primary energy, sample mobility, incident current, or a less sample thickness, which is shown as the leakage current dominated mode. While in the cases of a lower primary energy, sample mobility, incident current, or a larger sample thickness, the balance state of charging is mainly dominated by secondary electron current, as the secondary electron current dominated mode. In other cases except the above two, the balance state will be determined by both leakage and secondary currents as the mixture mode. In the same mode, variations of charging characteristics with parameters are monotonic. When the change of a parameter makes the negative surface potential increase, the effect of this parameter on negative surface potential will be weakened, while the effects of other parameters on the negative potential will be enhanced. With the change of current dominated mode, the total charge quantity exhibits the local maximum with respect to the sample thickness, and the value of this maximum increases with primary energy. Moreover, the leakage current increases with incident current linearly. The presented results can be helpful for understanding regularities and mechanisms of charging due to electron irradiation, and estimating the charging intensity under different conditions of irradiation and sample material.
      通信作者: 王芳, wangfang@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11175140, 11004157, 11204229)、空间微波技术国家重点实验室基金(批准号: 9140C530101130C53013)和中央高校基本科研业务费资助的课题.
      Corresponding author: Wang Fang, wangfang@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175140, 11004157, 11204229), the Foundation of National Key Laboratory of Space Microwave Technology, China (Grant No. 9140C530101130C53013), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 物理学报 58 1205]

    [2]

    Cazaux J 2005 J. Microsc. 217 16

    [3]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [4]

    Bolorizadeh M, Joy D C 2007 J. Micro-Nanolithogr. MEMS MOEMS 6 023004

    [5]

    Ciappa M, Koschik A, Dapor M, Fichtner W 2010 Microelectron. Reliab. 50 1407

    [6]

    Ura K 1998 J. Electron Microsc. 47 143

    [7]

    Zhang H B, Li W Q, Wu D W 2009 J. Electron Microsc. 58 15

    [8]

    Li W J, Bauhofer W 2011 Carbon 49 3891

    [9]

    Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901

    [10]

    Zhang H B, Li W Q, Cao M 2012 Chin. Phys. Lett. 29 047901

    [11]

    Hillenbrand J, Motz T, Sessler G M, Zhang X, Behrendt N, von Salis-Soglio C, Erhard D P, Altstaedt V, Schmidt H W 2009 J. Phys. D: Appl. Phys. 42 065410

    [12]

    Song Z G, Ong C K, Gong H 1996 J. Appl. Phys. 79 7123

    [13]

    Liu W, Ingino J, Pease R F 1995 J. Vac. Sci. Technol. B 13 1979

    [14]

    Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62

    [15]

    Boughariou A, Blaise G, Braga D, Kallel A 2004 J. Appl. Phys. 95 4117

    [16]

    Tsuno N, Ominami Y, Ohta H, Shinada H, Makino H, Kimura Y 2011 J. Vac. Sci. Technol. B 29 031209

    [17]

    Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst. Solids 358 1157

    [18]

    Qin X G, Li K, Ma Y L, Zheng X Q, Liu X D 2009 Proceedings of the 9th Intemational Conference: Protection of Materials and Structures from Space Environment Toronto, Canada, May 20-23, 2008 p665

    [19]

    Zhou B, Su Q, He D Y 2009 Chin. Phys. B 18 4988

    [20]

    Chen R, Han J W, Zheng H S, Yu Y T, Shangguang S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103

    [21]

    Zheng X Q, Li S T, Wu J, Qin X G, Wang L 2009 Aerospace Mat. Tech. 39 44 (in Chinese) [郑晓泉, 李盛涛, 乌江, 秦晓刚, 王立 2009 宇航材料工艺 39 44]

    [22]

    Fitting H J, Touzin M 2010 J. Appl. Phys. 108 033711

    [23]

    Sessler G M 2006 IEEE Trans. Dielectr. Electr. Insul. 13 942

    [24]

    Dapor M, Ciappa M, Fichtner W 2010 J. Micro-Nanolithogr. MEMS MOEMS 9 023001

    [25]

    Yasuda M, Morimoto K, Kainuma Y, Kawata H, Hirai Y 2008 Jpn. J. Appl. Phys. 47 4890

    [26]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684]

    [27]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [28]

    Yasuda M, Kainuma Y, Kawata H, Hirai Y, Tanaka Y, Watanabe R, Kotera M 2008 J. Appl. Phys. 104 124904

    [29]

    Li W J, Buschhorn S T, Schulte K, Bauhofer W 2011 Carbon 49 1955

    [30]

    Miyoshi M, Ura K 2005 J. Vac. Sci. Technol. B 23 2763

    [31]

    Li W Q, Zhang H B 2010 Micron 41 416

    [32]

    Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese) [常天海, 郑俊荣 2012 物理学报 61 241401]

    [33]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [34]

    Penn D R 1987 Phys. Rev. B 35 482

    [35]

    Ding Z J, Shimizu R 1996 Scanning 18 92

    [36]

    Joy D C, Luo S 1989 Scanning 11 176

    [37]

    Boubaya M, Blaise G 2007 Eur. Phys. J. Appl. Phys. 37 79

    [38]

    Taylor D M 1978 J. Phys. D: Appl. Phys. 11 2443

  • [1]

    Quan R H, Zhang Z L, Han J W, Huang J G, Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese) [全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟 2009 物理学报 58 1205]

    [2]

    Cazaux J 2005 J. Microsc. 217 16

    [3]

    Cazaux J 2010 J. Electron Spectrosc. Relat. Phenom. 176 58

    [4]

    Bolorizadeh M, Joy D C 2007 J. Micro-Nanolithogr. MEMS MOEMS 6 023004

    [5]

    Ciappa M, Koschik A, Dapor M, Fichtner W 2010 Microelectron. Reliab. 50 1407

    [6]

    Ura K 1998 J. Electron Microsc. 47 143

    [7]

    Zhang H B, Li W Q, Wu D W 2009 J. Electron Microsc. 58 15

    [8]

    Li W J, Bauhofer W 2011 Carbon 49 3891

    [9]

    Cao M, Wang F, Liu J, Zhang H B 2012 Chin. Phys. B 21 127901

    [10]

    Zhang H B, Li W Q, Cao M 2012 Chin. Phys. Lett. 29 047901

    [11]

    Hillenbrand J, Motz T, Sessler G M, Zhang X, Behrendt N, von Salis-Soglio C, Erhard D P, Altstaedt V, Schmidt H W 2009 J. Phys. D: Appl. Phys. 42 065410

    [12]

    Song Z G, Ong C K, Gong H 1996 J. Appl. Phys. 79 7123

    [13]

    Liu W, Ingino J, Pease R F 1995 J. Vac. Sci. Technol. B 13 1979

    [14]

    Feng G B, Cao M, Yan L P, Zhang H B 2013 Micron 52-53 62

    [15]

    Boughariou A, Blaise G, Braga D, Kallel A 2004 J. Appl. Phys. 95 4117

    [16]

    Tsuno N, Ominami Y, Ohta H, Shinada H, Makino H, Kimura Y 2011 J. Vac. Sci. Technol. B 29 031209

    [17]

    Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst. Solids 358 1157

    [18]

    Qin X G, Li K, Ma Y L, Zheng X Q, Liu X D 2009 Proceedings of the 9th Intemational Conference: Protection of Materials and Structures from Space Environment Toronto, Canada, May 20-23, 2008 p665

    [19]

    Zhou B, Su Q, He D Y 2009 Chin. Phys. B 18 4988

    [20]

    Chen R, Han J W, Zheng H S, Yu Y T, Shangguang S P, Feng G Q, Ma Y Q 2015 Chin. Phys. B 24 046103

    [21]

    Zheng X Q, Li S T, Wu J, Qin X G, Wang L 2009 Aerospace Mat. Tech. 39 44 (in Chinese) [郑晓泉, 李盛涛, 乌江, 秦晓刚, 王立 2009 宇航材料工艺 39 44]

    [22]

    Fitting H J, Touzin M 2010 J. Appl. Phys. 108 033711

    [23]

    Sessler G M 2006 IEEE Trans. Dielectr. Electr. Insul. 13 942

    [24]

    Dapor M, Ciappa M, Fichtner W 2010 J. Micro-Nanolithogr. MEMS MOEMS 9 023001

    [25]

    Yasuda M, Morimoto K, Kainuma Y, Kawata H, Hirai Y 2008 Jpn. J. Appl. Phys. 47 4890

    [26]

    Qin X G, He D Y, Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese) [秦晓刚, 贺德衍, 王骥 2009 物理学报 58 684]

    [27]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [28]

    Yasuda M, Kainuma Y, Kawata H, Hirai Y, Tanaka Y, Watanabe R, Kotera M 2008 J. Appl. Phys. 104 124904

    [29]

    Li W J, Buschhorn S T, Schulte K, Bauhofer W 2011 Carbon 49 1955

    [30]

    Miyoshi M, Ura K 2005 J. Vac. Sci. Technol. B 23 2763

    [31]

    Li W Q, Zhang H B 2010 Micron 41 416

    [32]

    Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese) [常天海, 郑俊荣 2012 物理学报 61 241401]

    [33]

    Czyzewski Z, MacCallum D O, Romig A, Joy D C 1990 J. Appl. Phys. 68 3066

    [34]

    Penn D R 1987 Phys. Rev. B 35 482

    [35]

    Ding Z J, Shimizu R 1996 Scanning 18 92

    [36]

    Joy D C, Luo S 1989 Scanning 11 176

    [37]

    Boubaya M, Blaise G 2007 Eur. Phys. J. Appl. Phys. 37 79

    [38]

    Taylor D M 1978 J. Phys. D: Appl. Phys. 11 2443

  • [1] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [2] 刘婧, 张海波. 空间电子辐照聚合物的充电特性和微观机理. 物理学报, 2019, 68(5): 059401. doi: 10.7498/aps.68.20181925
    [3] 霍志胜, 蒲红斌, 李维勤. 高能透射电子束照射聚合物薄膜的带电效应. 物理学报, 2019, 68(23): 230201. doi: 10.7498/aps.68.20191112
    [4] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [5] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [6] 高博文, 高潮, 阙文修, 韦玮. 新型高效聚合物/富勒烯有机光伏电池研究进展. 物理学报, 2012, 61(19): 194213. doi: 10.7498/aps.61.194213
    [7] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [8] 黄永宪, 吕世雄, 田修波, 杨士勤, Fu Ricky, Chu K Paul, 冷劲松, 李垚. 聚合物物理属性对离子注入效应的影响. 物理学报, 2012, 61(10): 105203. doi: 10.7498/aps.61.105203
    [9] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [10] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [11] 全荣辉, 张振龙, 韩建伟, 黄建国, 闫小娟. 电子辐照下聚合物介质深层充电现象研究. 物理学报, 2009, 58(2): 1205-1211. doi: 10.7498/aps.58.1205
    [12] 张红平, 欧阳洁, 阮春蕾. 纤维悬浮聚合物熔体描述的均一结构多尺度模型. 物理学报, 2009, 58(1): 619-630. doi: 10.7498/aps.58.619
    [13] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟. 物理学报, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [14] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [15] 尹丽琴, 彭俊彪. 聚合物P3HT在不同退火温度下的空穴传输特性. 物理学报, 2009, 58(5): 3456-3460. doi: 10.7498/aps.58.3456
    [16] 张亚妮. 微结构聚合物光纤中高双折射可调效应研究. 物理学报, 2008, 57(9): 5729-5734. doi: 10.7498/aps.57.5729
    [17] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [18] 张锡娟, 李广起, 孙鑫. 聚合物中产生双激子的新通道. 物理学报, 2002, 51(1): 134-137. doi: 10.7498/aps.51.134
    [19] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  2642
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-02
  • 修回日期:  2015-08-02
  • 刊出日期:  2015-11-05

电子辐照聚合物带电特性多参数共同作用的数值模拟

  • 1. 西安交通大学电子科学与技术系, 电子物理与器件教育部重点实验室, 西安 710049
  • 通信作者: 王芳, wangfang@mail.xjtu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11175140, 11004157, 11204229)、空间微波技术国家重点实验室基金(批准号: 9140C530101130C53013)和中央高校基本科研业务费资助的课题.

摘要: 电子辐照聚合物样品的带电特性是扫描电子显微镜成像、电子束探针微分析以及空间器件辐照效应等领域的一个重要研究课题. 通过建立基于蒙特卡罗方法的电子散射和时域有限差分法的电子输运的数值模型, 并采用高效的多线程并行计算, 模拟了电子非透射辐照聚合物样品的带电特性, 得到了带电稳态下的样品底部泄漏电流密度、表面负电位以及样品总电荷密度等带电特征量受入射电子能量、入射电流密度、样品材料的电子迁移率、样品厚度等相关参数共同作用的影响. 结果表明, 一个参数的变化使表面负电位增强时, 其他参数对负电位的影响将增强. 样品的带电稳态特征量在同一个电流平衡的模式下受参数影响的变化是单调的. 当电流平衡模式发生变化时, 如在入射电子能量较低的条件下, 样品内部的总电荷量会随着样品厚度的增大而先增加后减小, 出现局部极大值. 样品底部的泄漏电流密度随着入射电流密度的增大而近线性成比例地增大. 研究结果对于揭示电子辐照聚合物的带电规律及微观机理、预测不同条件下的样品带电状态具有重要科学意义.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回