搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

振荡场作用下聚合物/纳米棒混合体系的自组装

王康颖 马才媛 蔚慧敏 张海涛 岑建勇 王英英 潘俊星 张进军

引用本文:
Citation:

振荡场作用下聚合物/纳米棒混合体系的自组装

王康颖, 马才媛, 蔚慧敏, 张海涛, 岑建勇, 王英英, 潘俊星, 张进军

The self-assembly behavior of polymer/nanorods hybrid system under oscillation field

Wang Kang-Ying, Ma Cai-Yuan, Yu Hui-Min, Zhang Hai-Tao, Cen Jian-Yong, Wang Ying-Ying, Pan Jun-Xing, Zhang Jin-Jun
PDF
HTML
导出引用
  • 采用元胞动力学和布朗动力学联用方法研究了振荡场作用下两嵌段共聚物/均聚物/纳米棒混合体系的自组装相行为. 通过计算模拟, 探讨了振荡场的振幅和频率对混合体系相形貌形成和演化的影响. 研究发现振荡场对体系有序结构的形成和转变有重要作用, 随着外加振荡场频率的增大, 混合体系形貌从平行于场方向的条纹结构过渡到斜层状结构再转变为垂直于场方向的条纹结构. 进一步分析了振荡场作用下体系畴尺寸的演化及纳米棒取向角的变化情况. 研究结果为制备和调控聚合物纳米复合材料有序结构提供了新的方法和参考.
    The self-assembly behavior of diblock copolymer/homopolymer/nanorods hybrid system under oscillation field is performed by using Cell Dynamics Scheme (CDS) and Brownian Dynamics (BD). The effects of the amplitude and frequency of the oscillation field on the formation and evolution of the mixture morphology are investigated systematically. It is found that the oscillation field plays an important role in the formation and transformation of the ordered structure. With the frequency increasing, the orientation of the lamellar structure transforms from parallel to the field direction to random angle and then to perpendicular to the field direction. Compared with the pure rod system, the addition of polymers has a combing effect. Under high amplitude and low frequency ($ {\rm{\omega }}\leqslant 0.01 $) of the oscillation field, the arrangement of nanorods transforms from vertical to horizontal. However, under high amplitude and high frequency ($ \omega > 0.01 $), the nanorods change from vertical/horizontal hybrid arrangement to vertical arrangement. The evolution of domain size and orientation angle of nanorods under oscillation field are further analysed. The results provide a new method and reference for fabricating and regulating the ordered structure of polymer nanocomposites.
      通信作者: 潘俊星, panjx@sxnu.edu.cn ; 张进军, zhangjinjun@sxnu.edu.cn
    • 基金项目: 山西省应用基础研究计划(批准号: 20210302123245, 20210302123337)、山西省研究生教育创新项目(批准号: 2021Y489)和国家级大学生创新创业项目(批准号: 20220297)资助的课题.
      Corresponding author: Pan Jun-Xing, panjx@sxnu.edu.cn ; Zhang Jin-Jun, zhangjinjun@sxnu.edu.cn
    • Funds: Projects supported by the Applied Basic Research Plan of Shanxi Province, China (Grant Nos. 2021030212345, 20210302123337), the Graduate Education Innovation Program of Shanxi Province, China (Grant No. 2021Y489), and the National Undergraduate Innovation and Entrepreneurship Program (Grant No.20220297).
    [1]

    Seul M, Andelman D 1995 Science 267 476Google Scholar

    [2]

    Tanaka H 1993 Phys. Rev. Lett. 70 2770Google Scholar

    [3]

    Marencic A P, Adamson D H, Chaikin P M, Register R A 2010 Phys. Rev. E 81 011503Google Scholar

    [4]

    Wu S 2009 Phys. Rev. E 79 031803Google Scholar

    [5]

    Croll A B, Shi A C, Dalnoki-Veress K 2009 Phys. Rev. E 80 051803Google Scholar

    [6]

    Hosoi A E, Kogan D, Devereaux C E, Bernoff A J, Baker S M 2005 Phys. Rev. Lett. 95 037801Google Scholar

    [7]

    Lopes W A 2002 Phys. Rev. E 65 031606Google Scholar

    [8]

    Leibler L 1980 Macromolecules 13 1602Google Scholar

    [9]

    Kletenik-Edelman O, Ploshnik E, Salant A, Shenhar R, Banin U, Rabani E 2008 Phys. Chem. C 112 4498Google Scholar

    [10]

    Keblinski P, Kumar S K, Maritan A, Koplik J, Banavar J R 1996 Phys. Rev. Lett. 76 1106Google Scholar

    [11]

    Harrison C, Adamson D H, Cheng Z, Sebastian J M, Sethuraman S, Huse D A, Chaikin P M 2000 Science 290 1558Google Scholar

    [12]

    Matsuyama A, Evans R M L, Cates M E 2000 Phys. Rev. E 61 2977Google Scholar

    [13]

    Yamaguchi D, Hashimoto T 2001 Macromolecules 34 6495Google Scholar

    [14]

    Angelescu D E, Waller J H, Register R A, Chaikin P M 2005 Adv. Mater 17 1878Google Scholar

    [15]

    Komura S, Kodama H 1997 Phys. Rev. E 55 1722Google Scholar

    [16]

    Roan J R, Shakhnovich E I 1999 Phys. Rev. E 59 2109Google Scholar

    [17]

    Ginzburg V V 2005 Macromolecules 38 2362Google Scholar

    [18]

    He G, Ginzburg V V, Balazs A C 2006 J. Polym. Sci. B 44 2389Google Scholar

    [19]

    Lee J Y, Thompson R B, Jasnow D, Balazs A C 2002 Macromolecules 35 4855Google Scholar

    [20]

    Osipov M A, Gorkunov M V 2016 Eur. Phys. J. E. 39 1Google Scholar

    [21]

    Osipov M A, Gorkunov M V, Kudryavtsev, Y V 2017 Mol. Cryst. Liq. Cryst. 647 405Google Scholar

    [22]

    Osipov M A, Gorkunov M V, Berezkin A V, Kudryavtsev Y V 2018 Phys. Rev. E 97 042706Google Scholar

    [23]

    Diaz J, Pinna M, Zvelindovsky A, Pagonabarraga I 2019 Soft Matter 15 6400Google Scholar

    [24]

    Diaz J, Pinna M, Zvelindovsky A V, Pagonabarraga I 2019 Macromolecules 52 8285Google Scholar

    [25]

    Diaz J, Pinna M, Zvelindovsky A V, Pagonabarraga I, Shenhar R 2020 Macromolecules 53 3234Google Scholar

    [26]

    Ye X, Shi T, Lu Z, Zhang C, Sun Z, An L 2005 Macromolecules 38 8853Google Scholar

    [27]

    Ma J W, Li X, Tang P, Yang Y 2007 J. Phys. Chem. B 111 1552Google Scholar

    [28]

    Guo Y Q, Pan J X, Sun M N, Zhang J J 2017 J. Chem. Phys. 146 024902Google Scholar

    [29]

    Guo Y Q 2021 Chin. Phys. B 30 048301Google Scholar

    [30]

    Sun M, Zhang J J, Wang B, Wu H S, Pan J 2011 Phys. Rev. E 84 011802Google Scholar

    [31]

    Sun M N, Zhang J J, Pan J X, Wang B F, Wu, H S 2016 Nano 11 1650008Google Scholar

    [32]

    Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. B 22 026401Google Scholar

    [33]

    Thorkelsson K, Mastroianni A J, Ercius P, Xu T 2012 Aps. March Meeting 12 498Google Scholar

    [34]

    Thorkelsson K, Nelson J H, Alivisatos A P, Xu T 2013 ACS 13 4908Google Scholar

    [35]

    Thorkelsson K, Bronstein N, Xu T 2016 Macromolecules 49 6669Google Scholar

    [36]

    Ma Y Q 2000 Phys. Rev. E 62 8207Google Scholar

    [37]

    Zhu Y J, Ma Y Q 2003 Phys. Rev. E 67 041503Google Scholar

    [38]

    Olszowka V, Hund M, Kuntermann V, Scherdel S, Tsarkova L, Bker A, Krausch G 2006 Soft Matter 2 1089Google Scholar

    [39]

    Wang Q, Nealey P F, de Pablo J J 2003 Macromolecules 36 1731Google Scholar

    [40]

    Ginzburg V V, Gibbons C, Qiu F, Peng G, Balazs A C 2000 Macromolecules 33 6140Google Scholar

    [41]

    Choi S H, Lodge T P, Bates F S 2010 Phys. Rev. Lett. 104 047802Google Scholar

    [42]

    Huang F, Addas K, Ward A, Flynn N T, Velasco E, Hagan M F, Fraden S 2009 Phys. Rev. Lett. 102 108302Google Scholar

    [43]

    Chen Z R, Kornfield J A, Smith S D, Grothaus J T, Satkowski M M 1997 Science 277 1248Google Scholar

    [44]

    Mullin T 2000 Phys. Rev. Lett. 84 4741Google Scholar

    [45]

    Wu M W, Register R A, Chaikin P M 2006 Phys. Rev. E 74 040801Google Scholar

    [46]

    Morozov A N, van Saarloos W 2005 Phys. Rev. Lett. 95 024501Google Scholar

    [47]

    Hong K M, Noolandi J 1983 Macromolecules 16 1083Google Scholar

    [48]

    Morozov A N, Fraaije J G E M 2002 Phys. Rev. E 65 031803Google Scholar

    [49]

    Zvelindovsky A V, Sevink G J A, Fraaije J G E M 2000 Phys. Rev. E 62 R3063Google Scholar

    [50]

    Koizumi S, Hasegawa H, Hashimoto T 1994 Macromolecules 27 6532Google Scholar

    [51]

    Ginzburg V V, Qiu F, Paniconi M, Peng G, Jasnow D, Balazs A C 1999 Phys. Rev. Lett. 82 4026Google Scholar

    [52]

    Qiu F, Ginzburg V V, Paniconi M, Peng G, Jasnow D, Balazs A C 1999 Langmuir 15 4952Google Scholar

    [53]

    Buxton G A, Balazs A C 2004 Mol. Simulat. 30 249Google Scholar

    [54]

    Balazs A C, Ginzburg V V, Qiu F, Peng G, Jasnow D 2000 J. Phys. Chem. B 104 3411Google Scholar

    [55]

    Ginzburg V V, Peng G, Qiu F, Jasnow D, Balazs, A C 1999 Phys. Rev. E 60 4352Google Scholar

    [56]

    Zhang J J, Jin G, Ma Y 2005 Phys. Rev. E 71 051803Google Scholar

    [57]

    Zhang J J, Jin G, Ma Y 2005 Eur. Phys. J. E 18 359Google Scholar

    [58]

    Ito A 1998 Phys. Rev. E 58 6158Google Scholar

    [59]

    Liu B, Tong C, Yang Y 2001 J. Phys. Chem. B 105 10091Google Scholar

    [60]

    Tong C, Yang Y 2002 J. Chem. Phys. 116 1519Google Scholar

    [61]

    Oono Y, Bahiana M 1988 Phys. Rev. Lett. 61 1109Google Scholar

    [62]

    Bates F S, Fredrickson G H 1990 Annu. Rev. Phys. Chem. 41 525Google Scholar

    [63]

    Chakrabarti A, Gunton J D 1993 Phys. Rev. E 47 R792Google Scholar

    [64]

    Schmittmann B, Zia R K P 1998 Phys. Rep. 301 45Google Scholar

    [65]

    Schmittmann B 1990 Phys. B 4 2269Google Scholar

    [66]

    Oono Y, Puri S 1987 Phys. Rev. Lett. 58 836Google Scholar

    [67]

    Oono Y, Puri S 1988 Phys. Rev. A 38 434Google Scholar

    [68]

    Puri S, Oono Y 1988 Phys. Rev. A 38 1542Google Scholar

    [69]

    Shinozaki A, Oono Y 1992 Phys. Rev. A 45 R2161Google Scholar

    [70]

    Geng X B, Pan J X, Zhang J J, Sun M N, Cen J Y 2018 Chin. Phys. B 27 058102Google Scholar

    [71]

    Shinozaki A, Oono Y 1993 Phys. Rev. E 48 2622Google Scholar

  • 图 1  $ t=5\times {10}^{6} $时, 随着振荡场频率改变, AB/C/ NRs混合体系自组装形貌图 (a)斜层状纳米线结构$(\gamma = $$ 0, \omega =0$); (b)平行结构($ \gamma =0.05, \omega =0.0005) $; (c)过渡结构($ \gamma =0.05, \omega =0.005 $); (d) (e)斜层结构($\gamma =0.05, $$ \omega =0.01$); (f)垂直结构($\gamma = $$ 0.05, \omega =0.05$). 其中, $ \gamma $代表振荡场的振幅, $ \omega $代表振荡场的频率. 红色代表A嵌段, 蓝色代表B嵌段, 黄色代表C单体, 黑色代表纳米棒

    Fig. 1.  The self-assembly topography of AB/C/NRs hybrid system at $ {\rm{t}}=5\times {10}^{6} $ as the frequency of the oscillating field changes: (a) Slanted layered nanowire structure ($\gamma $$ =0, \omega =0$); (b) parallel structure ($ \gamma =0.05, \omega =0.0005 $); (c) transition structure ($\gamma = $$ 0.05, \omega =0.005$); (d) (e) inclined layer structure ($ \gamma =0.05, \omega =0.01 $); (f) vertical structure ($ \gamma =0.05, \omega =0.05 $). Where, $ \gamma $ represents the amplitude of the oscillation field and $ \omega $ represents the frequency of the oscillation field. Red represents block A, blue represents block B, yellow represents monomer C, and black represents nanorods.

    图 2  振荡场作用下, AB/C/NRs混合体系相结构形貌图随振幅和频率变化的二维相图, 其中, 红色方块代表斜层结构, 蓝色圆圈代表平行结构, 绿色三角代表垂直结构, 紫色菱形代表过渡结构

    Fig. 2.  Two-dimensional phase diagram of phase structure morphology of AB/C/NRs hybrid system with amplitude and frequency variation under oscillating field, where red square represents oblique layer structure, blue circle represents parallel structure, green triangle represents vertical structure, and purple diamond represents transition structure.

    图 3  在不同频率下, 均聚物C发生畴生长尺寸随时间演化的双对数图 (a)沿x轴方向的畴尺寸图$ {R}_{x}\left(t\right) $; (b)沿y轴方向的畴尺寸图$ {R}_{y}\left(t\right) $. 其中, 黑色线: 平行结构($\omega $$ =0.0005$), 红色线: 过渡结构($ \omega =0.005 $); 蓝色线: 斜层结构($ \omega =0.01 $); 绿色线: 垂直结构($ \omega =0.05 $). $ \omega $代表振荡场的频率

    Fig. 3.  Double logarithmic graph of domain growth size vs. time evolution of homopolymer C at different frequencies. (a) Domain size map $ {R}_{x}\left(t\right) $ along the x-axis; (b) domain size $ {R}_{y}\left(t\right) $ along the y-axis. Among them, the black line: parallel structure ($\omega = $$ 0.0005$), the red line: transition structure ($ \omega =0.005 $); blue line: oblique layer structure ($\omega = $$ 0.01$); green line: vertical structure ($\omega = $$ 0.05$). Omega represents the frequency of the oscillating field.

    图 4  在不同振荡场强度下, 纳米棒取向角平均值随时间的变化图. 其中, 黑色线: 平行结构($\omega = 0.0005$), 红色线: 过渡结构($\omega = $$ 0.005$); 蓝色线: 斜层结构($ \omega =0.01 $); 绿色线: 垂直结构($ \omega =0.05 $). $ \omega $代表振荡场的频率

    Fig. 4.  Variation of the mean orientation Angle of nanorods with time under different oscillating field intensities. Among them, the black line: parallel structure ($ \omega =0.0005 $), the red line: transition structure ($ \omega =0.005 $); blue line: oblique layer structure ($\omega = $$ 0.01$); green line: vertical structure ($ \omega =0.05 $). Omega represents the frequency of the oscillating field.

    图 5  振荡场作用下, AB/C/NRs混合体系畴结构随时间演化的形貌图 (a) $t=10000$; (b)$ t=20000 $; (c)$t= $$ 100000$; (d)$t= $$ 1000000$; (e)$ t=2000000 $; (f)$ t=5000000 $. 其中, $L=11, {N}{L}=123, $$ \gamma =0.05, \omega =0.0005$

    Fig. 5.  Morphology diagram of domain structure evolution of AB/C/NRs hybrid system with time under oscillating field: (a)$t= $$ 10000$; (b)$ t=20000 $; (c)$ t=100000 $; (d)$ t=1000000 $; (e)$ t=2000000 $; (f) $ t=5000000 $. Among them, $ L=11 $, ${N}{L}=123 $, $ \gamma =0.05 $, $ \omega =0.0005 $.

  • [1]

    Seul M, Andelman D 1995 Science 267 476Google Scholar

    [2]

    Tanaka H 1993 Phys. Rev. Lett. 70 2770Google Scholar

    [3]

    Marencic A P, Adamson D H, Chaikin P M, Register R A 2010 Phys. Rev. E 81 011503Google Scholar

    [4]

    Wu S 2009 Phys. Rev. E 79 031803Google Scholar

    [5]

    Croll A B, Shi A C, Dalnoki-Veress K 2009 Phys. Rev. E 80 051803Google Scholar

    [6]

    Hosoi A E, Kogan D, Devereaux C E, Bernoff A J, Baker S M 2005 Phys. Rev. Lett. 95 037801Google Scholar

    [7]

    Lopes W A 2002 Phys. Rev. E 65 031606Google Scholar

    [8]

    Leibler L 1980 Macromolecules 13 1602Google Scholar

    [9]

    Kletenik-Edelman O, Ploshnik E, Salant A, Shenhar R, Banin U, Rabani E 2008 Phys. Chem. C 112 4498Google Scholar

    [10]

    Keblinski P, Kumar S K, Maritan A, Koplik J, Banavar J R 1996 Phys. Rev. Lett. 76 1106Google Scholar

    [11]

    Harrison C, Adamson D H, Cheng Z, Sebastian J M, Sethuraman S, Huse D A, Chaikin P M 2000 Science 290 1558Google Scholar

    [12]

    Matsuyama A, Evans R M L, Cates M E 2000 Phys. Rev. E 61 2977Google Scholar

    [13]

    Yamaguchi D, Hashimoto T 2001 Macromolecules 34 6495Google Scholar

    [14]

    Angelescu D E, Waller J H, Register R A, Chaikin P M 2005 Adv. Mater 17 1878Google Scholar

    [15]

    Komura S, Kodama H 1997 Phys. Rev. E 55 1722Google Scholar

    [16]

    Roan J R, Shakhnovich E I 1999 Phys. Rev. E 59 2109Google Scholar

    [17]

    Ginzburg V V 2005 Macromolecules 38 2362Google Scholar

    [18]

    He G, Ginzburg V V, Balazs A C 2006 J. Polym. Sci. B 44 2389Google Scholar

    [19]

    Lee J Y, Thompson R B, Jasnow D, Balazs A C 2002 Macromolecules 35 4855Google Scholar

    [20]

    Osipov M A, Gorkunov M V 2016 Eur. Phys. J. E. 39 1Google Scholar

    [21]

    Osipov M A, Gorkunov M V, Kudryavtsev, Y V 2017 Mol. Cryst. Liq. Cryst. 647 405Google Scholar

    [22]

    Osipov M A, Gorkunov M V, Berezkin A V, Kudryavtsev Y V 2018 Phys. Rev. E 97 042706Google Scholar

    [23]

    Diaz J, Pinna M, Zvelindovsky A, Pagonabarraga I 2019 Soft Matter 15 6400Google Scholar

    [24]

    Diaz J, Pinna M, Zvelindovsky A V, Pagonabarraga I 2019 Macromolecules 52 8285Google Scholar

    [25]

    Diaz J, Pinna M, Zvelindovsky A V, Pagonabarraga I, Shenhar R 2020 Macromolecules 53 3234Google Scholar

    [26]

    Ye X, Shi T, Lu Z, Zhang C, Sun Z, An L 2005 Macromolecules 38 8853Google Scholar

    [27]

    Ma J W, Li X, Tang P, Yang Y 2007 J. Phys. Chem. B 111 1552Google Scholar

    [28]

    Guo Y Q, Pan J X, Sun M N, Zhang J J 2017 J. Chem. Phys. 146 024902Google Scholar

    [29]

    Guo Y Q 2021 Chin. Phys. B 30 048301Google Scholar

    [30]

    Sun M, Zhang J J, Wang B, Wu H S, Pan J 2011 Phys. Rev. E 84 011802Google Scholar

    [31]

    Sun M N, Zhang J J, Pan J X, Wang B F, Wu, H S 2016 Nano 11 1650008Google Scholar

    [32]

    Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. B 22 026401Google Scholar

    [33]

    Thorkelsson K, Mastroianni A J, Ercius P, Xu T 2012 Aps. March Meeting 12 498Google Scholar

    [34]

    Thorkelsson K, Nelson J H, Alivisatos A P, Xu T 2013 ACS 13 4908Google Scholar

    [35]

    Thorkelsson K, Bronstein N, Xu T 2016 Macromolecules 49 6669Google Scholar

    [36]

    Ma Y Q 2000 Phys. Rev. E 62 8207Google Scholar

    [37]

    Zhu Y J, Ma Y Q 2003 Phys. Rev. E 67 041503Google Scholar

    [38]

    Olszowka V, Hund M, Kuntermann V, Scherdel S, Tsarkova L, Bker A, Krausch G 2006 Soft Matter 2 1089Google Scholar

    [39]

    Wang Q, Nealey P F, de Pablo J J 2003 Macromolecules 36 1731Google Scholar

    [40]

    Ginzburg V V, Gibbons C, Qiu F, Peng G, Balazs A C 2000 Macromolecules 33 6140Google Scholar

    [41]

    Choi S H, Lodge T P, Bates F S 2010 Phys. Rev. Lett. 104 047802Google Scholar

    [42]

    Huang F, Addas K, Ward A, Flynn N T, Velasco E, Hagan M F, Fraden S 2009 Phys. Rev. Lett. 102 108302Google Scholar

    [43]

    Chen Z R, Kornfield J A, Smith S D, Grothaus J T, Satkowski M M 1997 Science 277 1248Google Scholar

    [44]

    Mullin T 2000 Phys. Rev. Lett. 84 4741Google Scholar

    [45]

    Wu M W, Register R A, Chaikin P M 2006 Phys. Rev. E 74 040801Google Scholar

    [46]

    Morozov A N, van Saarloos W 2005 Phys. Rev. Lett. 95 024501Google Scholar

    [47]

    Hong K M, Noolandi J 1983 Macromolecules 16 1083Google Scholar

    [48]

    Morozov A N, Fraaije J G E M 2002 Phys. Rev. E 65 031803Google Scholar

    [49]

    Zvelindovsky A V, Sevink G J A, Fraaije J G E M 2000 Phys. Rev. E 62 R3063Google Scholar

    [50]

    Koizumi S, Hasegawa H, Hashimoto T 1994 Macromolecules 27 6532Google Scholar

    [51]

    Ginzburg V V, Qiu F, Paniconi M, Peng G, Jasnow D, Balazs A C 1999 Phys. Rev. Lett. 82 4026Google Scholar

    [52]

    Qiu F, Ginzburg V V, Paniconi M, Peng G, Jasnow D, Balazs A C 1999 Langmuir 15 4952Google Scholar

    [53]

    Buxton G A, Balazs A C 2004 Mol. Simulat. 30 249Google Scholar

    [54]

    Balazs A C, Ginzburg V V, Qiu F, Peng G, Jasnow D 2000 J. Phys. Chem. B 104 3411Google Scholar

    [55]

    Ginzburg V V, Peng G, Qiu F, Jasnow D, Balazs, A C 1999 Phys. Rev. E 60 4352Google Scholar

    [56]

    Zhang J J, Jin G, Ma Y 2005 Phys. Rev. E 71 051803Google Scholar

    [57]

    Zhang J J, Jin G, Ma Y 2005 Eur. Phys. J. E 18 359Google Scholar

    [58]

    Ito A 1998 Phys. Rev. E 58 6158Google Scholar

    [59]

    Liu B, Tong C, Yang Y 2001 J. Phys. Chem. B 105 10091Google Scholar

    [60]

    Tong C, Yang Y 2002 J. Chem. Phys. 116 1519Google Scholar

    [61]

    Oono Y, Bahiana M 1988 Phys. Rev. Lett. 61 1109Google Scholar

    [62]

    Bates F S, Fredrickson G H 1990 Annu. Rev. Phys. Chem. 41 525Google Scholar

    [63]

    Chakrabarti A, Gunton J D 1993 Phys. Rev. E 47 R792Google Scholar

    [64]

    Schmittmann B, Zia R K P 1998 Phys. Rep. 301 45Google Scholar

    [65]

    Schmittmann B 1990 Phys. B 4 2269Google Scholar

    [66]

    Oono Y, Puri S 1987 Phys. Rev. Lett. 58 836Google Scholar

    [67]

    Oono Y, Puri S 1988 Phys. Rev. A 38 434Google Scholar

    [68]

    Puri S, Oono Y 1988 Phys. Rev. A 38 1542Google Scholar

    [69]

    Shinozaki A, Oono Y 1992 Phys. Rev. A 45 R2161Google Scholar

    [70]

    Geng X B, Pan J X, Zhang J J, Sun M N, Cen J Y 2018 Chin. Phys. B 27 058102Google Scholar

    [71]

    Shinozaki A, Oono Y 1993 Phys. Rev. E 48 2622Google Scholar

  • [1] 赵先拓, 徐林林, 田悦, 焦安欣, 马慧, 张梦雅, 崔清强. 自组装CuS多孔级次纳米花及其吸附自沉积特性研究. 物理学报, 2021, 70(22): 226101. doi: 10.7498/aps.70.20211152
    [2] 李爱云, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 对称纳米棒三聚体结构的Fano共振特性研究. 物理学报, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [3] 王文静, 李冲, 张毛毛, 高琨. 共轭聚合物内非均匀场驱动的超快激子输运的动力学研究. 物理学报, 2019, 68(17): 177201. doi: 10.7498/aps.68.20190432
    [4] 严大东, 张兴华. 聚合物结晶理论进展. 物理学报, 2016, 65(18): 188201. doi: 10.7498/aps.65.188201
    [5] 华昀峰, 张冬, 章林溪. 半刚性高分子链螺旋结构诱导纳米棒的有序结构. 物理学报, 2015, 64(8): 088201. doi: 10.7498/aps.64.088201
    [6] 崔宏飞, 李凯, 杨晨光, 贺淑莉. (Fe1-xCox)3BO5纳米棒磁性的研究. 物理学报, 2015, 64(5): 057501. doi: 10.7498/aps.64.057501
    [7] 余森江. 硅油基底上受限金属薄膜自组装褶皱的原子力显微镜研究. 物理学报, 2014, 63(11): 116801. doi: 10.7498/aps.63.116801
    [8] 刘佳, 徐玲玲, 张海霖, 吕威, 朱琳, 高红, 张喜田. 一步水热法在Al掺杂ZnO纳米盘上可控自组装合成ZnO纳米棒阵列. 物理学报, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [9] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒. 物理学报, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [10] 闫悦, 赵谡玲, 徐征, 龚伟, 王大伟. 多环类苝四甲酸二酐插入层对ZnO纳米棒和聚合物复合太阳电池性能的影响. 物理学报, 2011, 60(8): 088803. doi: 10.7498/aps.60.088803
    [11] 邵铮铮, 王晓峰, 张学骜, 常胜利. 原子力显微技术研究ZnO纳米棒的压电放电特性. 物理学报, 2010, 59(1): 550-554. doi: 10.7498/aps.59.550
    [12] 史晶, 高琨, 雷杰, 解士杰. 基态非简并导电聚合物——坐标空间研究. 物理学报, 2009, 58(1): 459-464. doi: 10.7498/aps.58.459
    [13] 金华, 安立楠, 卜凡亮, 李丽华, 王蓉, 杨为佑, 张立功. SiC纳米棒的紫外发光研究. 物理学报, 2009, 58(4): 2594-2598. doi: 10.7498/aps.58.2594
    [14] 王 浩, 曾谷城, 廖常俊, 蔡继业, 郑树文, 范广涵, 陈 勇, 刘颂豪. GaxIn1-xP缓冲层组分对InP自组装形貌影响的研究. 物理学报, 2005, 54(4): 1726-1730. doi: 10.7498/aps.54.1726
    [15] 夏阿根, 杨 波, 金进生, 张亦文, 汤 凡, 叶高翔. 液体基底表面金薄膜中的有序结构和自组装现象. 物理学报, 2005, 54(1): 302-306. doi: 10.7498/aps.54.302
    [16] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [17] 杨海涛, 申承民, 杜世萱, 苏轶坤, 王岩国, 汪裕萍, 高鸿钧. 钴纳米粒子自组装有序阵列与磁性. 物理学报, 2003, 52(12): 3114-3119. doi: 10.7498/aps.52.3114
    [18] 申承民, 苏轶坤, 杨海涛, 杨天中, 汪裕萍, 高鸿钧. 磁性钴纳米晶的二维自组装. 物理学报, 2003, 52(2): 483-486. doi: 10.7498/aps.52.483
    [19] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  1869
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-19
  • 修回日期:  2023-01-02
  • 上网日期:  2023-02-04
  • 刊出日期:  2023-04-05

/

返回文章
返回