搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间电子辐照聚合物的充电特性和微观机理

刘婧 张海波

引用本文:
Citation:

空间电子辐照聚合物的充电特性和微观机理

刘婧, 张海波

Charging characteristics and micromechanism of space electrons irradiated polymers

Liu Jing, Zhang Hai-Bo
PDF
HTML
导出引用
  • 空间电子辐照聚合物的充电特性和微观机理是研究和防护航天器聚合物充放电特性的基础. 采用蒙特卡罗方法模拟空间电子的散射过程, 快二次电子模型模拟二次电子的产生, 有限差分法求解电荷连续性方程、电流密度方程和泊松方程的电荷输运过程, 俘获过程基于Poole-Frenkel效应来实现. 基于电子散射/输运同步模型基础, 结合法国国家航空航天科研局(ONERA)的地球同步轨道电子能谱分布理论公式和欧空局(SIRENE)机构的地面实验方法, 建立了基于地球同步轨道电子能谱分布的空间多能电子的散射模型. 通过空间电子辐照聚合物充电过程的数值模拟,获得了空间电荷密度、电位、电场和空间电位分布. 阐明了空间电子辐照聚合物的充电特性和样品微观参数与表面电位的关联性. 表面电位特性与实验结果相吻合, 单能电子的电位强度高于多能电子的电位. 充电达到稳态时, 电子迁移率较小时(小于10–11 cm2·V–1·s–1), 空间电位绝对值随电子迁移率的降低明显加强; 复合率较大时(大于10–14 cm3·s–1), 空间电位绝对值随复合率的增大而增大. 研究结果对于揭示空间电子辐照聚合物的充电特性和微观机理、提高航天器充放电故障机理研究水平 具有重要科学意义和价值.
    The charging characteristics and microscopic mechanism of space electrons irradiated polymers are the basis for the study and protection of spacecraft polymer charging and discharging characteristics. Monte Carlo method is used to simulate the scattering process of space electrons, and the fast secondary electron model simulates the generation of secondary electrons. The finite difference method is used to solve the charge transport process of charge continuity equation, current density equation and Poisson equation. The capture process realizes the transmission process of space electrons through the equation based on the Poole-French effect. Based on the electronic scattering/transport synchronization model and combined with the geostationary earth orbit electronic spectrum distribution theoretical formula of the French National Aeronautics and Space Research Agency (ONERA) and the ground experimental method of the agency (SIRNE), a scattering model based on the electron spectrum distribution in geosynchronous orbit is established. The numerical simulation of the charging process of space electrons irradiated polymers is carried out. The space charge density, space potential, electric field distribution and the space potential of polymer sample under the irradiation of single- and multi-energy electrons in space environment are obtained. The relationship among charging characteristics, microscopic parameters and surface potential of the sample is clarified. The surface potential characteristics of space electrons irradiated polymer are consistent with the experimental results. The single energy charge potential and strength are higher than those of multi-energy electrons. When the charging reaches a steady state, the electron mobility is smaller (less than 10–11 cm2·V–1·s–1), and the absolute value of the space potential is significantly enhanced with the decrease of the electron mobility. When the composite rate is large (greater than 10–14 cm3·s–1), the absolute value of the spatial potential increases with recombination rate increasing. The study of the charging characteristics of space electrons is not comprehensive because only the mode of single-energy electron irradiation is taken into consideration. The research results are of great scientific significance and practical value for revealing the charging characteristics and microscopic mechanism of space electrons irradiated polymer and improving the research level of spacecraft charge and discharge fault mechanism.
      通信作者: 刘婧, xjtuliujing@126.com
    • 基金项目: 国家自然科学基金(批准号: 11805030)资助的课题.
      Corresponding author: Liu Jing, xjtuliujing@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11805030).
    [1]

    Balmain K G 1986 IEEE Trans. Electr. Insul. 21 427

    [2]

    Garrett H B, Whittlesey A C 2000 IEEE Trans. Plasma Sci. 28 2017Google Scholar

    [3]

    李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401Google Scholar

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401Google Scholar

    [4]

    曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 119401Google Scholar

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401Google Scholar

    [5]

    黄建国, 易忠, 孟立飞, 赵华, 刘业楠 2013 物理学报 62 099401Google Scholar

    Huang J G, Yi Z, Meng L F, Zhao H, Liu Y N 2013 Acta Phys. Sin. 62 099401Google Scholar

    [6]

    袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛 2017 物理学报 66 097701Google Scholar

    Yuan D L, Min D M, Huang Y, Xie D R, Wang H Y, Yang F, Zhu Z H, Fei X, Li S T 2017 Acta Phys. Sin. 66 097701Google Scholar

    [7]

    王松, 武占成, 唐小金, 孙永卫, 易忠 2016 物理学报 65 025201Google Scholar

    Wang S, Wu Z C, Tang X J, Sun Y W, Yi Z 2016 Acta Phys. Sin. 65 025201Google Scholar

    [8]

    刘婧, 张海波 2014 物理学报 63 149401Google Scholar

    Liu J, Zhang H B 2014 Acta Phys. Sin. 63 149401Google Scholar

    [9]

    杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国 2017 物理学报 66 227101Google Scholar

    Yang W L, Han J S, Wang Y, Lin J Q, He G Q, Sun H G 2017 Acta Phys. Sin. 66 227101Google Scholar

    [10]

    侯堃, 张占文, 黄勇, 韦建军 2016 物理学报 65 035203

    Hou K, Zhang Z W, Huang Y, Wei J J 2016 Acta Phys. Sin. 65 035203

    [11]

    Garrett H B, Evans R W, Whittlesey A C, Katz I, Jun I 2008 IEEE Trans. Plasma Sci. 36 2440Google Scholar

    [12]

    Riffaud J, Griseri V, Berquez L 2016 Rev. Sci. Instrum. 87 073901Google Scholar

    [13]

    Koons H, Mazur J, Lopatin A, Pitchford D, Bogorad A, Herschitz R 2006 J. Spacer. Rockets 43 178Google Scholar

    [14]

    Czeremuszkin G, Latreche M, Wertheimer M R 2001 Nucl. Instrum. Meth. B 185 88Google Scholar

    [15]

    Okumura T, Masui H, Toyoda K, Cho M G, Nitta K, Imaizumi M 2009 J. Spacecr. Rockets 46 697Google Scholar

    [16]

    Toyoda K, Masui H, Muranaka T, Cho M, Urabe T, Miura T, Kawakita S, Gonohe Y, Kikuchi T 2008 IEEE Trans. Plasma Sci. 36 2413Google Scholar

    [17]

    Davis V A, Mandell M J, Cooke D C, Wheelock A, Matéo-Vélez J C, Roussel J F, Payan D, Cho M, Koga K 2013 IEEE Trans. Plasma Sci. 41 3303Google Scholar

    [18]

    Zhang P 2017 J. Comput. Theoret. Trans. 46 330Google Scholar

    [19]

    Donegan M M, Sample J L, Dennison J R, Hoffmann R 2010 J. Spacecr. Rockets 47 134Google Scholar

    [20]

    Liu J, Zhang H B, Ding Y H, Tong J S, Yuan Y, Zhao Q 2019 Micron 116 100Google Scholar

    [21]

    Liu J, Zhang H B 2014 Micron 67 12

    [22]

    Sayehi M, Sahnoun R D, Fakhfakh S, Baklouti S 2018 Ceram. Int. 44 5202Google Scholar

    [23]

    Ammar L B, Fakhfakh S, Jbara O, Rondot S, Hadjadj A 2017 Micron 98 39Google Scholar

    [24]

    Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst. Solids 358 1157Google Scholar

    [25]

    李维勤, 张海波 2008 物理学报 57 3219Google Scholar

    Li W Q, Zhang H B 2008 Acta Phys. Sin. 57 3219Google Scholar

    [26]

    Li W Q, Zhang H B 2010 Appl. Surf. Sci. 256 3482Google Scholar

    [27]

    Li W Q, Zhang H B 2010 Micron 41 416Google Scholar

    [28]

    Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961Google Scholar

    [29]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [30]

    Miyake H, Tanaka Y 2017 Sensor. Mater. 29 1213

    [31]

    Hiro S, Tsuji K, Fujii H 1999 Electr. Eng. Jpn. 129 10Google Scholar

    [32]

    Miyake H, Honjoh M, Maruta S, Tanaka Y, Takada T, Koga K, Matsumoto H, Goka T, Dirassen B, Levy L, Payan D 2007 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canda, Oct. 14−17, 2007 p763

    [33]

    Fitting H J, Touzin M 2011 J. Appl. Phys. 110 044111Google Scholar

  • 图 1  空间电子辐照聚酰亚胺(Kapton)样品的简化模型以及相关的电流密度示意图

    Fig. 1.  Simplified model of space electron irradiation of polyimide (Kapton) samples and diagram of associated current density.

    图 2  空间电子辐照聚合物表面电位数值模拟和实验数据的比较[32]

    Fig. 2.  Numerical simulation and experimental data comparison of surface potential of space electron irradiation polymer[32].

    图 3  空间电子散射 (a)散射电子密度分布; (b)散射空穴密度分布

    Fig. 3.  Space electron scattering: (a) Scattering electron density distribution; (b) scattering hole density distribution.

    图 4  空间电子辐照聚合物空间电荷和电子密度分布 (a)空间电荷; (b)电子密度

    Fig. 4.  Space charge and electron density distribution of irradiated polymers: (a) Space charge; (b) electron density.

    图 5  空间单能电子和多能电子辐照聚合物的空间电位分布

    Fig. 5.  Spatial potential distribution of polymer irradiated with single-and multi-electron energy in space.

    图 6  空间单能电子和多能电子辐照聚合物的空间电场分布

    Fig. 6.  Distribution of space electric fields of polymer irradiated by space single-and multi-electron.

    图 7  电子迁移率对应的空间电位

    Fig. 7.  Spatial potentials corresponding to electron mobility.

    图 8  样品厚度对应的空间电位

    Fig. 8.  Space potential corresponding to sample thickness.

    图 9  复合率对应的的空间电位

    Fig. 9.  Space potential corresponding to the recombination rate.

    图 10  介电常数对应的空间电位

    Fig. 10.  Spatial potentials corresponding to dielectric constants.

  • [1]

    Balmain K G 1986 IEEE Trans. Electr. Insul. 21 427

    [2]

    Garrett H B, Whittlesey A C 2000 IEEE Trans. Plasma Sci. 28 2017Google Scholar

    [3]

    李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401Google Scholar

    Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin. 62 059401Google Scholar

    [4]

    曹鹤飞, 刘尚合, 孙永卫, 原青云 2013 物理学报 62 119401Google Scholar

    Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401Google Scholar

    [5]

    黄建国, 易忠, 孟立飞, 赵华, 刘业楠 2013 物理学报 62 099401Google Scholar

    Huang J G, Yi Z, Meng L F, Zhao H, Liu Y N 2013 Acta Phys. Sin. 62 099401Google Scholar

    [6]

    袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛 2017 物理学报 66 097701Google Scholar

    Yuan D L, Min D M, Huang Y, Xie D R, Wang H Y, Yang F, Zhu Z H, Fei X, Li S T 2017 Acta Phys. Sin. 66 097701Google Scholar

    [7]

    王松, 武占成, 唐小金, 孙永卫, 易忠 2016 物理学报 65 025201Google Scholar

    Wang S, Wu Z C, Tang X J, Sun Y W, Yi Z 2016 Acta Phys. Sin. 65 025201Google Scholar

    [8]

    刘婧, 张海波 2014 物理学报 63 149401Google Scholar

    Liu J, Zhang H B 2014 Acta Phys. Sin. 63 149401Google Scholar

    [9]

    杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国 2017 物理学报 66 227101Google Scholar

    Yang W L, Han J S, Wang Y, Lin J Q, He G Q, Sun H G 2017 Acta Phys. Sin. 66 227101Google Scholar

    [10]

    侯堃, 张占文, 黄勇, 韦建军 2016 物理学报 65 035203

    Hou K, Zhang Z W, Huang Y, Wei J J 2016 Acta Phys. Sin. 65 035203

    [11]

    Garrett H B, Evans R W, Whittlesey A C, Katz I, Jun I 2008 IEEE Trans. Plasma Sci. 36 2440Google Scholar

    [12]

    Riffaud J, Griseri V, Berquez L 2016 Rev. Sci. Instrum. 87 073901Google Scholar

    [13]

    Koons H, Mazur J, Lopatin A, Pitchford D, Bogorad A, Herschitz R 2006 J. Spacer. Rockets 43 178Google Scholar

    [14]

    Czeremuszkin G, Latreche M, Wertheimer M R 2001 Nucl. Instrum. Meth. B 185 88Google Scholar

    [15]

    Okumura T, Masui H, Toyoda K, Cho M G, Nitta K, Imaizumi M 2009 J. Spacecr. Rockets 46 697Google Scholar

    [16]

    Toyoda K, Masui H, Muranaka T, Cho M, Urabe T, Miura T, Kawakita S, Gonohe Y, Kikuchi T 2008 IEEE Trans. Plasma Sci. 36 2413Google Scholar

    [17]

    Davis V A, Mandell M J, Cooke D C, Wheelock A, Matéo-Vélez J C, Roussel J F, Payan D, Cho M, Koga K 2013 IEEE Trans. Plasma Sci. 41 3303Google Scholar

    [18]

    Zhang P 2017 J. Comput. Theoret. Trans. 46 330Google Scholar

    [19]

    Donegan M M, Sample J L, Dennison J R, Hoffmann R 2010 J. Spacecr. Rockets 47 134Google Scholar

    [20]

    Liu J, Zhang H B, Ding Y H, Tong J S, Yuan Y, Zhao Q 2019 Micron 116 100Google Scholar

    [21]

    Liu J, Zhang H B 2014 Micron 67 12

    [22]

    Sayehi M, Sahnoun R D, Fakhfakh S, Baklouti S 2018 Ceram. Int. 44 5202Google Scholar

    [23]

    Ammar L B, Fakhfakh S, Jbara O, Rondot S, Hadjadj A 2017 Micron 98 39Google Scholar

    [24]

    Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst. Solids 358 1157Google Scholar

    [25]

    李维勤, 张海波 2008 物理学报 57 3219Google Scholar

    Li W Q, Zhang H B 2008 Acta Phys. Sin. 57 3219Google Scholar

    [26]

    Li W Q, Zhang H B 2010 Appl. Surf. Sci. 256 3482Google Scholar

    [27]

    Li W Q, Zhang H B 2010 Micron 41 416Google Scholar

    [28]

    Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961Google Scholar

    [29]

    Sessler G M, Figueiredo M T, Ferreira G F L 2004 IEEE Trans. Dielectr. Electr. Insul. 11 192

    [30]

    Miyake H, Tanaka Y 2017 Sensor. Mater. 29 1213

    [31]

    Hiro S, Tsuji K, Fujii H 1999 Electr. Eng. Jpn. 129 10Google Scholar

    [32]

    Miyake H, Honjoh M, Maruta S, Tanaka Y, Takada T, Koga K, Matsumoto H, Goka T, Dirassen B, Levy L, Payan D 2007 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Vancouver, Canda, Oct. 14−17, 2007 p763

    [33]

    Fitting H J, Touzin M 2011 J. Appl. Phys. 110 044111Google Scholar

  • [1] 于博文, 何孝天, 徐进良. 超临界CO2池式传热流固耦合传热特性数值模拟. 物理学报, 2024, 73(10): 104401. doi: 10.7498/aps.73.20231953
    [2] 查俊伟, 王帆. 高导热聚酰亚胺电介质薄膜研究进展. 物理学报, 2022, 71(23): 233601. doi: 10.7498/aps.71.20221398
    [3] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [4] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [5] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [6] 侯堃, 张占文, 黄勇, 韦建军. 气相沉积法制备聚酰亚胺薄膜不同单体配比的表征及其性能影响. 物理学报, 2016, 65(3): 035203. doi: 10.7498/aps.65.035203
    [7] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律. 物理学报, 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [8] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [9] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟. 物理学报, 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [10] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [11] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [12] 刘婧, 张海波. 空间多能电子辐照聚合物充电过程的稳态特性. 物理学报, 2014, 63(14): 149401. doi: 10.7498/aps.63.149401
    [13] 孙伟峰, 王暄. 聚酰亚胺/铜纳米颗粒复合物的分子动力学模拟研究. 物理学报, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [14] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究. 物理学报, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [15] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [16] 刘晓旭, 殷景华, 程伟东, 卜文斌, 范勇, 吴忠华. 利用小角X射线散射技术研究组分对聚酰亚胺/Al2O3杂化薄膜界面特性与分形特征的影响. 物理学报, 2011, 60(5): 056101. doi: 10.7498/aps.60.056101
    [17] 王雨虹, 王江安, 任席闯. 激光空泡特性实验与数值计算研究. 物理学报, 2009, 58(12): 8372-8378. doi: 10.7498/aps.58.8372
    [18] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟. 物理学报, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [19] 袁行球, 陈重阳, 李 辉, 赵太泽, 郭文康, 须 平. 电子束离子阱中高价态离子演化过程的数值模拟. 物理学报, 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  7303
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 修回日期:  2018-12-05
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-05

/

返回文章
返回