搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭球颗粒搅拌运动及混合特性的数值模拟研究

刘扬 韩燕龙 贾富国 姚丽娜 王会 史宇菲

引用本文:
Citation:

椭球颗粒搅拌运动及混合特性的数值模拟研究

刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲

Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles

Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei
PDF
导出引用
  • 为探讨在强制搅拌下同属性颗粒由分层到分布均匀状态的运动特征及规律, 本研究利用三维离散单元法模拟不同转速下U形罐体内等粒径椭球颗粒的混合过程. 从单颗粒随机运动轨迹、宏观颗粒流运动矢量图的角度分析颗粒混合过程的宏观混合规律及局部混合特征, 定量描述混合度与搅拌叶片旋转圈数的数学关系. 结果表明, 强制搅拌下同属性分层颗粒的混合是在对流混合及四个局部混合共同作用下实现的; 分层颗粒的混合度与搅拌轴的转速无关, 而与搅拌轴旋转圈数直接相关; 混合度与圈数的关系符合指数增长模型. 研究结果可为散体物料增混行业的设备改进及操作控制提供依据和参考.
    To investigate the motion characteristics and the law of identical property for particles obtained under segregation to uniform distribution conditions in forced agitation mixing, the mixing process of the same sized ellipsoidal particles at different rotating speeds in a U-tank is simulated using three-dimensional discrete element method. Macroscopic mixing law and partial mixing characteristics in particle mixing process are analysed in the view of single particle random motion trajectory and motion vector diagram of macroscopic particle flow. And the mathematical relation between mixability and revolutions of agitating blades is described quantitatively. Results show that convective mixing and four partial mixing characteristics control the mixing homogeneity process of identical property of segregation particles in forced agitation mixing. Mixability of segregation particles is independent of rotating speed of the agitating shaft, but has a direct correlation with revolutions. The relation between mixability and revolutions agrees with the exponential growth model. Research results can provide the basis and reference for equipment improvement and operating control of bulk material in the industry of the augmenting of mix.
    • 基金项目: 黑龙江省自然科学基金(批准号:E201322)、哈尔滨市优秀学科带头人基金(批准号:RC2013XK006004)、北方寒地现代农业装备技术重点实验室开放课题资助(批准号:548008)和哈尔滨市应用技术研究与开发项目(批准号:2013DB2BG005)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. E201322), the Harbin Foundation for Outstanding Academic Leaders, China (Grant No. RC2013XK006004), the Modern Agricultural Equipment Technology Key Laboratory Open Project Funding of Northern Cold Region, China (Grant No. 548008), and the Application of Technology Research and Development Project of Harbin, China(Grant No. 2013DB2BG005).
    [1]

    Chan K W, Kwan A K H 2014 particuology 16 108

    [2]

    Ouyang H W, Huang S C, Liu Z M, Wang Q 2009 Rare Met. Mater. Eng. 38 1310 (in Chinese) [欧阳鸿武, 黄誓成, 刘卓民, 王琼 2009 稀有金属材料与工程 38 1310]

    [3]

    Khalilitehrani M, Abrahamsson P J, Rasmuson A 2014 Powder Technol. 263 45

    [4]

    Abdul Q, Shi Q F, Liang X W, Sun G 2010 Chin. Phys. B 19 034601

    [5]

    Cleary P W, 2013 Powder Technol. 248 1035

    [6]

    Radl S, Brandl D, Heimburg H, Glasser B J, Khinast J G 2012 Powder Technol. 226 199

    [7]

    ZhaoL L 2010 Ph. D. Dissertation (Xuzhou:China University of Mining And Technology) (in Chinese) [赵啦啦 2010 博士学位论文(徐州:中国矿业大学)]

    [8]

    Demagh Y, Moussa H B, Lachi M, Noui S, Bordja L 2012 Powder Technol. 224 260

    [9]

    Conway S L, Lekhal A, Khinast J G, Glasser B J 2005 Chem. Eng. Sci. 60 7091

    [10]

    Lemieux M, Bertrand F, Chaouki J, Gosselin P 2007 Chem. Eng. Sci. 62 1783

    [11]

    Kwapinska M, Saage G, Tsotsas E 2006 Powder Technol. 161 69

    [12]

    Dubey A, Hsia H, Saranteas K, Brone D, Misra T, Muzzio F J 2011 Chem. Eng. Sci. 66 5107

    [13]

    Grajales L M, Xavier N M, Henrique J P, Thomeo J C 2012 Powder Technol. 222 167

    [14]

    Hou Q F, Dong K J, Yu A B 2014 Powder Technol. 256 529

    [15]

    Chandratilleke C R, Yu A B, Bridgwater J 2012 Chem. Eng. Sci. 79 54

    [16]

    Ren B, Shao Y J, Zhong WQ, Jin B S, Yuan Z L, Lu Yong 2012 Powder Technol. 222 85

    [17]

    Wu D P, Li X X, Qin Q, Guan B, Zang Y 2014 Acta Phys. Sin. 63 098201 (in Chinese) [吴迪平, 李星祥, 秦勤, 管奔, 臧勇 2014 物理学报 63 098201]

    [18]

    Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501 (in Chinese) [韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 物理学报 63 174501]

    [19]

    Hu G M 2010 Analysis and Simulation of Granular System by Discrete Element Method Using EDEM (Wuhan:Wuhan University of Technology Press) p301 (in Chinese) [胡国明 2010 颗粒系统的离散元素法分析仿真(武汉:武汉理工大学出版社) 第301页]

    [20]

    Wang R F, Li Z Y, Dou R B, Guo J Z 2013 Trans. CSAM. 44 93 (in Chinese) [王瑞芳, 李占勇, 窦如彪, 郭建忠 2013 农业机械学报 44 93]

    [21]

    Mellmann J, 2001 Powder Technol. 118 251

    [22]

    McCarthy J J, Khakhar D V, Ottino J M 2000 Powder Technol. 109 72

    [23]

    Cisar S E, Ottno J M 2007 AIChE J. 53 1151

    [24]

    Sudah O S, Coffin-Beach D, Muzzio F J 2002 Powder Technol. 126 191

    [25]

    Zhou Y C, Yu A B, Bridgwater J 2003 J. Chem. Technol. Biotechnol. 78 187

    [26]

    Gao H L, Chen Y C, Zhao Y Z, Zheng J Y 2011 Acta Phys. Sin. 60 124501 (in Chinese) [高红利, 陈友川, 赵永志, 郑津洋 2011 物理学报 60 124501]

  • [1]

    Chan K W, Kwan A K H 2014 particuology 16 108

    [2]

    Ouyang H W, Huang S C, Liu Z M, Wang Q 2009 Rare Met. Mater. Eng. 38 1310 (in Chinese) [欧阳鸿武, 黄誓成, 刘卓民, 王琼 2009 稀有金属材料与工程 38 1310]

    [3]

    Khalilitehrani M, Abrahamsson P J, Rasmuson A 2014 Powder Technol. 263 45

    [4]

    Abdul Q, Shi Q F, Liang X W, Sun G 2010 Chin. Phys. B 19 034601

    [5]

    Cleary P W, 2013 Powder Technol. 248 1035

    [6]

    Radl S, Brandl D, Heimburg H, Glasser B J, Khinast J G 2012 Powder Technol. 226 199

    [7]

    ZhaoL L 2010 Ph. D. Dissertation (Xuzhou:China University of Mining And Technology) (in Chinese) [赵啦啦 2010 博士学位论文(徐州:中国矿业大学)]

    [8]

    Demagh Y, Moussa H B, Lachi M, Noui S, Bordja L 2012 Powder Technol. 224 260

    [9]

    Conway S L, Lekhal A, Khinast J G, Glasser B J 2005 Chem. Eng. Sci. 60 7091

    [10]

    Lemieux M, Bertrand F, Chaouki J, Gosselin P 2007 Chem. Eng. Sci. 62 1783

    [11]

    Kwapinska M, Saage G, Tsotsas E 2006 Powder Technol. 161 69

    [12]

    Dubey A, Hsia H, Saranteas K, Brone D, Misra T, Muzzio F J 2011 Chem. Eng. Sci. 66 5107

    [13]

    Grajales L M, Xavier N M, Henrique J P, Thomeo J C 2012 Powder Technol. 222 167

    [14]

    Hou Q F, Dong K J, Yu A B 2014 Powder Technol. 256 529

    [15]

    Chandratilleke C R, Yu A B, Bridgwater J 2012 Chem. Eng. Sci. 79 54

    [16]

    Ren B, Shao Y J, Zhong WQ, Jin B S, Yuan Z L, Lu Yong 2012 Powder Technol. 222 85

    [17]

    Wu D P, Li X X, Qin Q, Guan B, Zang Y 2014 Acta Phys. Sin. 63 098201 (in Chinese) [吴迪平, 李星祥, 秦勤, 管奔, 臧勇 2014 物理学报 63 098201]

    [18]

    Han Y L, Jia F G, Tang Y R, Liu Y, Zhang Q 2014 Acta Phys. Sin. 63 174501 (in Chinese) [韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强 2014 物理学报 63 174501]

    [19]

    Hu G M 2010 Analysis and Simulation of Granular System by Discrete Element Method Using EDEM (Wuhan:Wuhan University of Technology Press) p301 (in Chinese) [胡国明 2010 颗粒系统的离散元素法分析仿真(武汉:武汉理工大学出版社) 第301页]

    [20]

    Wang R F, Li Z Y, Dou R B, Guo J Z 2013 Trans. CSAM. 44 93 (in Chinese) [王瑞芳, 李占勇, 窦如彪, 郭建忠 2013 农业机械学报 44 93]

    [21]

    Mellmann J, 2001 Powder Technol. 118 251

    [22]

    McCarthy J J, Khakhar D V, Ottino J M 2000 Powder Technol. 109 72

    [23]

    Cisar S E, Ottno J M 2007 AIChE J. 53 1151

    [24]

    Sudah O S, Coffin-Beach D, Muzzio F J 2002 Powder Technol. 126 191

    [25]

    Zhou Y C, Yu A B, Bridgwater J 2003 J. Chem. Technol. Biotechnol. 78 187

    [26]

    Gao H L, Chen Y C, Zhao Y Z, Zheng J Y 2011 Acta Phys. Sin. 60 124501 (in Chinese) [高红利, 陈友川, 赵永志, 郑津洋 2011 物理学报 60 124501]

  • [1] 庄晓如, 徐心海, 杨智, 赵延兴, 余鹏. 高温吸热管内超临界CO2传热特性的数值模拟. 物理学报, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [2] 王新鑫, 迟露鑫, 伍光凤, 李春天, 樊丁. Ar-O2混合气体电弧的数值模拟. 物理学报, 2019, 68(17): 178102. doi: 10.7498/aps.68.20190416
    [3] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响. 物理学报, 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [4] 蒋城露, 王昂, 赵锋, 尚海林, 张明建, 刘福生, 刘其军. 基于三维离散元方法探究奥克托今颗粒落锤撞击点火机理. 物理学报, 2019, 68(22): 228301. doi: 10.7498/aps.68.20190993
    [5] 王嗣强, 季顺迎. 椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析. 物理学报, 2019, 68(23): 234501. doi: 10.7498/aps.68.20191071
    [6] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟. 物理学报, 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [7] 危卫, 张力元, 顾兆林. 工业中粉体颗粒的荷电机理及数值模拟方法. 物理学报, 2015, 64(16): 168301. doi: 10.7498/aps.64.168301
    [8] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [9] 王哲, 王发展, 王欣, 何银花, 马姗, 吴振. Fe-Pb合金凝固多相体系内偏析形成过程的三维数值模拟. 物理学报, 2014, 63(7): 076101. doi: 10.7498/aps.63.076101
    [10] 黄培培, 刘大刚, 刘腊群, 王辉辉, 夏梦局, 陈颖. 单路脉冲功率真空装置的三维数值模拟研究. 物理学报, 2013, 62(19): 192901. doi: 10.7498/aps.62.192901
    [11] 靳冬欢, 刘文广, 陈星, 陆启生, 赵伊君. 三股互击式喷注器及燃烧室流场的数值模拟. 物理学报, 2012, 61(6): 064206. doi: 10.7498/aps.61.064206
    [12] 花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国. 熔石英亚表面三维Hertz锥形划痕附近光强分布的数值模拟. 物理学报, 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [13] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [14] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [15] 王晓南, 邸洪双, 梁冰洁, 夏小明. 热连轧粗轧调宽轧制过程边角部金属流动三维数值模拟. 物理学报, 2009, 58(13): 84-S88. doi: 10.7498/aps.58.84
    [16] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟. 物理学报, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [17] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟. 物理学报, 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [18] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [19] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  3286
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-16
  • 修回日期:  2014-12-06
  • 刊出日期:  2015-06-05

椭球颗粒搅拌运动及混合特性的数值模拟研究

  • 1. 东北农业大学工程学院, 哈尔滨 150030
    基金项目: 黑龙江省自然科学基金(批准号:E201322)、哈尔滨市优秀学科带头人基金(批准号:RC2013XK006004)、北方寒地现代农业装备技术重点实验室开放课题资助(批准号:548008)和哈尔滨市应用技术研究与开发项目(批准号:2013DB2BG005)资助的课题.

摘要: 为探讨在强制搅拌下同属性颗粒由分层到分布均匀状态的运动特征及规律, 本研究利用三维离散单元法模拟不同转速下U形罐体内等粒径椭球颗粒的混合过程. 从单颗粒随机运动轨迹、宏观颗粒流运动矢量图的角度分析颗粒混合过程的宏观混合规律及局部混合特征, 定量描述混合度与搅拌叶片旋转圈数的数学关系. 结果表明, 强制搅拌下同属性分层颗粒的混合是在对流混合及四个局部混合共同作用下实现的; 分层颗粒的混合度与搅拌轴的转速无关, 而与搅拌轴旋转圈数直接相关; 混合度与圈数的关系符合指数增长模型. 研究结果可为散体物料增混行业的设备改进及操作控制提供依据和参考.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回