搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析

王嗣强 季顺迎

引用本文:
Citation:

椭球颗粒材料在水平转筒内混合特性的超二次曲面离散元分析

王嗣强, 季顺迎

Mixing characteristics of ellipsoidal granular materials in horizontal rotating drum based on analysis by discrete element method

Wang Si-Qiang, Ji Shun-Ying
PDF
HTML
导出引用
  • 转筒中的颗粒流广泛存在于工业生产中, 颗粒形状是影响颗粒流动的重要因素. 本文基于超二次曲面方程描述球体和椭球颗粒的几何形态, 采用离散元方法对水平转筒中颗粒物质的流动和混合特性进行数值分析, 并与椭球混合过程的实验结果进行对比验证. 在此基础之上, 进一步研究了圆筒转速、颗粒填充分数和颗粒长宽比对混合率的影响规律. 计算结果表明: 颗粒材料的混合率随着转速的增加或填充分数的减小而增加. 在相同转速和填充分数下, 椭球颗粒的混合率高于球形颗粒. 同时, 长宽比为0.75和1.5时椭球颗粒具有最高的混合率. 当长宽比小于0.75时, 混合率随着长宽比的增加而增加; 当长宽比大于1.5时, 混合率随着长宽比的增加而减小. 此外, 椭球颗粒出现更明显的速度分层现象. 颗粒长宽比改变颗粒间的接触模式和系统的密集度, 增加了颗粒系统的平动而限制了转动, 在一定程度上提高了外部能量向颗粒系统转化的效率.
    Granular flow in the drum widely appears in the fields of industrial production, and discrete element method (DEM) proves to be a critical tool for studying the flow characteristics of granular materials. Considering simple contact and efficient calculations, the three-dimensional spheres are originally adopted by the DEM. Therefore, the DEM simulations mainly focus on spherical particles, while the dynamics of non-spherical particles in rotating drums is relatively rarely studied. It is reported that particle shape significantly affects the macroscopic and microscopic properties of the granular flow. Compared with spherical particles, non-spherical particles have low fluidity and great interlock. Meanwhile, it is questionable whether conclusions drawn from spherical particle systems can be transplanted to non-spherical particle systems. In this work, super-quadric equations based on continuous function representation are used to describe the spherical and ellipsoidal particles. Considering the complex contact detection between particles, the Newton iteration algorithm is used to solve the non-linear equations. Meanwhile, a non-linear contact model considering the equivalent radius of curvature at the local contact point is used to calculate the contact force between the super-quadric elements.To examine the validity of DEM model, we compare our simulated results with the previous experimental results for mixing process of ellipsoids, and this method is verified by good agreement between the simulated results and the experimental results. According to the aforementioned method, the influences of rotating speed, fill level, and aspect ratio on the mixing rate are discussed. The results show that the granular system reaches the cascading regime and the S-shaped surface of the granular bed is observed. In addition, Lacey mixing index is used to quantify the mixing of granular systems, and the mixing rate is obtained by fitting the Lacey mixing index. The mixing rate increases as the rotating speed increases. At the same rotating speed, the mixing rate of ellipsoids is faster than that of spheres. Meanwhile, the ellipsoidal particles have the fastest mixing rate when the aspect ratio is 0.75 or 1.50. When the aspect ratio is less than 0.75, the mixing ratio increases as the aspect ratio increases; when the aspect ratio is greater than 1.50, the mixing ratio decreases as the aspect ratio increases. Moreover, more pronounced velocity stratification is observed for ellipsoids. The translational kinetic energy of ellipsoidal particles is higher than that of spherical particles, and their rotational kinetic energy is lower than that of spheres. The aspect ratio of particles can adjust the contact mode between particles and cause the interlock. It means that the relative rotation between particles is limited and the efficiency of the external energy transferring to the non-spherical system may be improved.
      通信作者: 季顺迎, jisy@dlut.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2018YFA0605902)和国家自然科学基金 (批准号: 11772085)资助的课题
      Corresponding author: Ji Shun-Ying, jisy@dlut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0605902) and the National Natural Science Foundation of China (Grant No. 11772085)
    [1]

    Gioia G, Ott-Monsivais S E, Hill K M 2006 Phys. Rev. Lett. 96 138001Google Scholar

    [2]

    Emilien A, Farhang R 2014 Phys. Rev. Lett. 112 078001Google Scholar

    [3]

    Jaeger H M, Nagel S R 1992 Science 255 1523Google Scholar

    [4]

    季顺迎, 孙其诚, 严颖 2011 中国科学: 物理学 力学 天文学 41 1112

    Ji S Y, Sun Q C, Yan Y 2011 Sci. Sin-Phys. Mech. Astron. 41 1112

    [5]

    黄德财, 孙刚, 厚美瑛, 陆坤权 2006 物理学报 55 4754Google Scholar

    Huang D C, Sun G, Hou M Y, Lu K Q 2006 Acta Phys. Sin. 55 4754Google Scholar

    [6]

    彭政, 蒋亦民, 刘锐, 厚美瑛 2013 物理学报 62 024502Google Scholar

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502Google Scholar

    [7]

    孙其诚, 王光谦 2008 物理学报 57 4667Google Scholar

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667Google Scholar

    [8]

    夏建新, 吉祖稳, 毛旭锋, 曹华德 2013 科学通报 58 1200

    Xia J X, Ji Z W, Mao X F, Cao H D 2013 Chin. Sci. Bull. 58 1200

    [9]

    刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲 2015 物理学报 64 114501Google Scholar

    Liu Y, Han Y L, Jia F G, Yao L N, Wang H, Shi Y F 2015 Acta Phys. Sin. 64 114501Google Scholar

    [10]

    陈泉, 杨晖, 李然, 韩韧, 孙其诚 2019 中国科学: 物理学 力学 天文学 49 067001

    Chen Q, Yang H, Li R, Han R, Sun Q C 2019 Sci. Sin.: Phys. Mech. Astron. 49 067001

    [11]

    Cundall P A, Strack O D L 1979 Géotechnique 29 47Google Scholar

    [12]

    赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢 2018 物理学报 67 104502Google Scholar

    Zhao Z Y, Li Y J, Wang F S, Zhang Q, Hou M Y, Li W H, Ma G 2018 Acta Phys. Sin. 67 104502Google Scholar

    [13]

    Chand R, Khaskheli M A, Qadir A, Ge B, Shi Q 2012 Physica A 391 4590Google Scholar

    [14]

    黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明 2012 物理学报 61 124501Google Scholar

    Huang D C, Feng Y D, Xie W M, Lu M, Wu H P, Hu F L, Deng K M 2012 Acta Phys. Sin. 61 124501Google Scholar

    [15]

    Gui N, Fan J 2015 Int. J. Heat Mass Tran. 84 740Google Scholar

    [16]

    Xiao X, Tan Y, Zhang H, Deng R, Jiang S 2017 Powder Technol. 314 182Google Scholar

    [17]

    Chou S H, Hu H J, Hsiau S S 2016 Adv. Powder Technol. 27 1912Google Scholar

    [18]

    Halidan M, Chandratilleke G R, Dong K J, Yu A B 2018 Powder Technol. 325 92Google Scholar

    [19]

    高红利, 赵永志, 刘格思, 陈友川, 郑津洋 2011 物理学报 60 074501Google Scholar

    Gao H L, Zhao Y Z, Liu G S, Chen Y C, Zheng J Y 2011 Acta Phys. Sin. 60 074501Google Scholar

    [20]

    Zhong W, Yu A, Liu X, Tong Z, Zhang H 2016 Powder Technol. 302 108Google Scholar

    [21]

    Lu G, Third J R, Müller C R 2015 Chem. Eng. Sci. 127 425Google Scholar

    [22]

    Obermayr M, Dressler K, Vrettos C, Eberhard P 2013 Comput. Geotech. 49 299Google Scholar

    [23]

    Govender N, Wilke D N, Kok S 2015 Appl. Math. Comput. 267 810

    [24]

    刘璐, 季顺迎 2019 中国科学: 物理学 力学 天文学 49 064601

    Liu L, Ji S Y 2019 Sci. Sin.: Phys. Mech. Astron. 49 064601

    [25]

    王嗣强, 季顺迎 2018 物理学报 67 094501Google Scholar

    Wang S Q, Ji S Y 2018 Acta Phys. Sin. 67 094501Google Scholar

    [26]

    Garboczi E J, Bullard J W 2017 Adv. Powder Technol. 28 325Google Scholar

    [27]

    Gui N, Yang X, Tu J, Jiang S 2017 Powder Technol. 318 248Google Scholar

    [28]

    Ma H, Zhao Y 2017 Chem. Eng. Sci. 172 636Google Scholar

    [29]

    Ma H, Zhao Y 2018 Granul. Matter 20 41Google Scholar

    [30]

    Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C 2010 Chem. Eng. Sci. 65 5863Google Scholar

    [31]

    You Y, Zhao Y 2018 Powder Technol. 331 179Google Scholar

    [32]

    Barr 1981 IEEE Comput. Graph. Appl. 1 11Google Scholar

    [33]

    Soltanbeigi B, Podlozhnyuk A, Papanicolopulos S A, Kloss C, Pirker S, Ooi J Y 2018 Powder Technol. 329 288Google Scholar

    [34]

    Houlsby G T 2009 Powder Technol. 36 953

    [35]

    Podlozhnyuk A, Pirker S, Kloss C 2016 Comput. Part. Mech. 4 101

    [36]

    Zhou Z Y, Zou R P, Pinson D, Yu A B 2011 Ind. Eng. Chem. Res. 50 9787Google Scholar

    [37]

    He S Y, Gan J Q, Pinson D, Zhou Z Y 2019 Powder Technol. 341 157Google Scholar

    [38]

    Goldman R 2005 Comput. Aided Geom. D 22 632Google Scholar

    [39]

    Lacey P M C 1954 J. Chem. Technol. Biot. 4 257

    [40]

    Jiang M, Zhao Y, Liu G, Zheng J 2011 Particuology 9 270Google Scholar

    [41]

    He S, Gan J, Pinson D, Zhou Z 2017 EPJ Web of Conferences 140 06018Google Scholar

    [42]

    Donev A, Cisse I, Sachs D, Variano E A, Stillinger F H, Connelly R, Torquato S, Chaikin P M 2004 Science 303 990Google Scholar

    [43]

    Delaney G W, Cleary P W 2010 Europhys. Lett. 89 34002Google Scholar

  • 图 1  球体和椭球的超二次曲面离散元模型 (a) a = b = 2c; (b) a = b = c; (c) a = b = 0.5c

    Fig. 1.  Super-quadric discrete element model of spherical and ellipsoidal elements: (a) a = b = 2c; (b) a = b = c; (c) a = b = 0.5c

    图 2  超二次曲面单元间的接触检测

    Fig. 2.  Contact detection between super-quadric particles

    图 3  不同转动圈数下颗粒混合过程的实验结果[31]和离散元数值结果的对比 (a) ωr = 20 r/min的流动图案; (b) ωr = 20 r/min的Lacey混合指数; (c) ωr = 40 r/min的Lacey混合指数

    Fig. 3.  Comparison of mixing process between experiment results[31] and DEM simulation results at different rotating speeds: (a) Mixing pattern at 20 r/min; (b) Lacey mixing index at 20 r/min; (c) Lacey mixing index at 40 r/min.

    图 4  三维水平圆筒的离散元数值模型(a)和不同长宽比的椭球模型(b)

    Fig. 4.  Schematic diagram of three-dimensional horizontal drum simulated by DEM model (a) and examples of ellipsoids with different aspect ratios (b)

    图 5  旋转速度和颗粒长宽比对混合过程的影响 (a) ωr = 20 r/min的椭球颗粒(σ = 3.0); (b) ωr = 40 r/min的椭球颗粒(σ = 3.0); (c) ωr = 20 r/min的球体颗粒(σ = 1.0); (d) ωr = 20 r/min的椭球颗粒(σ = 0.5)

    Fig. 5.  The influence of rotating speed and aspect ratio on the mixing process: (a) Ellipsoids (σ = 3.0) at 20 r/min; (b) ellipsoids (σ = 3.0) at 40 r/min; (c) sphere (σ = 1.0) at 20 r/min; (d) ellipsoids (σ = 0.5) at 20 r/min

    图 6  旋转速度和颗粒形状对Lacey混合指数和混合率的影响 (a) 椭球颗粒(σ = 0.5); (b) 椭球颗粒(σ = 3.0); (c) 混合率

    Fig. 6.  The influence of rotating speed and particle shape on the Lacey mixing index and mixing rate: (a) Ellipsoids (σ = 0.5); (b) ellipsoids (σ = 3.0); (c) mixing rate.

    图 7  ωr = 30 r/min时椭球和球形颗粒的混合率随填充分数的变化

    Fig. 7.  Mixing rate of the ellipsoid and spherical particles varies with the fill level at ωr = 30 r/min

    图 8  ωr = 30 r/min时椭球颗粒的混合率和初始体积分数的变化 (a)混合率; (b)初始密集度

    Fig. 8.  Mixing rate and initial packing fraction under various aspect ratios at 30 r/min: (a) Mixing rate; (b) initial packing fraction

    图 9  不同转速下球体和椭球颗粒的速度分布 (a) 椭球(σ = 0.5); (b) 球体(σ = 1.0); (c) 椭球(σ = 3.0)

    Fig. 9.  The velocity profiles of granular bed for differently shaped particles: (a) Ellipsoids (σ = 0.5); (b) spheres (σ = 1.0); (c) ellip-soids (σ = 3.0)

    图 10  在不同转速下球体和椭球颗粒的平动动能和转动动能随时间的变化 (a), (b) 椭球(σ = 0.5); (c), (d) 球体(σ = 1.0); (e), (f) 椭球(σ = 3.0)

    Fig. 10.  Translational and rotational kinetic energy at different rotating speeds for differently shaped particles: (a), (b) Ellipsoids (σ = 0.5); (c), (d) spheres (σ = 1.0); (e), (f) ellipsoids (σ = 3.0)

    图 11  ωr = 30和50 r/min时球体和椭球颗粒的平动和转动动能  (a)平均平动动能; (b)平均转动动能

    Fig. 11.  Translational and rotational kinetic energy at 30 and 50 r/min for spheres and ellipsoids: (a) Average translational kinetic energy; (b) average rotational kinetic energy

    表 1  椭球颗粒离散元模拟的主要计算参数

    Table 1.  DEM simulation parameters of ellipsoids

    参数符号单位数值参数符号单位数值
    弹性模量EGPa1.0颗粒间摩擦系数μs0.3
    泊松比ν0.3法向阻尼系数Cn0.05
    颗粒密度ρkg/m31150.0切向阻尼系数Ct0.05
    颗粒与圆筒的摩擦系数μws0.9时间步长dts1 × 10–6
    下载: 导出CSV
  • [1]

    Gioia G, Ott-Monsivais S E, Hill K M 2006 Phys. Rev. Lett. 96 138001Google Scholar

    [2]

    Emilien A, Farhang R 2014 Phys. Rev. Lett. 112 078001Google Scholar

    [3]

    Jaeger H M, Nagel S R 1992 Science 255 1523Google Scholar

    [4]

    季顺迎, 孙其诚, 严颖 2011 中国科学: 物理学 力学 天文学 41 1112

    Ji S Y, Sun Q C, Yan Y 2011 Sci. Sin-Phys. Mech. Astron. 41 1112

    [5]

    黄德财, 孙刚, 厚美瑛, 陆坤权 2006 物理学报 55 4754Google Scholar

    Huang D C, Sun G, Hou M Y, Lu K Q 2006 Acta Phys. Sin. 55 4754Google Scholar

    [6]

    彭政, 蒋亦民, 刘锐, 厚美瑛 2013 物理学报 62 024502Google Scholar

    Peng Z, Jiang Y M, Liu R, Hou M Y 2013 Acta Phys. Sin. 62 024502Google Scholar

    [7]

    孙其诚, 王光谦 2008 物理学报 57 4667Google Scholar

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667Google Scholar

    [8]

    夏建新, 吉祖稳, 毛旭锋, 曹华德 2013 科学通报 58 1200

    Xia J X, Ji Z W, Mao X F, Cao H D 2013 Chin. Sci. Bull. 58 1200

    [9]

    刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲 2015 物理学报 64 114501Google Scholar

    Liu Y, Han Y L, Jia F G, Yao L N, Wang H, Shi Y F 2015 Acta Phys. Sin. 64 114501Google Scholar

    [10]

    陈泉, 杨晖, 李然, 韩韧, 孙其诚 2019 中国科学: 物理学 力学 天文学 49 067001

    Chen Q, Yang H, Li R, Han R, Sun Q C 2019 Sci. Sin.: Phys. Mech. Astron. 49 067001

    [11]

    Cundall P A, Strack O D L 1979 Géotechnique 29 47Google Scholar

    [12]

    赵子渊, 李昱君, 王富帅, 张祺, 厚美瑛, 李文辉, 马钢 2018 物理学报 67 104502Google Scholar

    Zhao Z Y, Li Y J, Wang F S, Zhang Q, Hou M Y, Li W H, Ma G 2018 Acta Phys. Sin. 67 104502Google Scholar

    [13]

    Chand R, Khaskheli M A, Qadir A, Ge B, Shi Q 2012 Physica A 391 4590Google Scholar

    [14]

    黄德财, 冯耀东, 解为梅, 陆明, 吴海平, 胡凤兰, 邓开明 2012 物理学报 61 124501Google Scholar

    Huang D C, Feng Y D, Xie W M, Lu M, Wu H P, Hu F L, Deng K M 2012 Acta Phys. Sin. 61 124501Google Scholar

    [15]

    Gui N, Fan J 2015 Int. J. Heat Mass Tran. 84 740Google Scholar

    [16]

    Xiao X, Tan Y, Zhang H, Deng R, Jiang S 2017 Powder Technol. 314 182Google Scholar

    [17]

    Chou S H, Hu H J, Hsiau S S 2016 Adv. Powder Technol. 27 1912Google Scholar

    [18]

    Halidan M, Chandratilleke G R, Dong K J, Yu A B 2018 Powder Technol. 325 92Google Scholar

    [19]

    高红利, 赵永志, 刘格思, 陈友川, 郑津洋 2011 物理学报 60 074501Google Scholar

    Gao H L, Zhao Y Z, Liu G S, Chen Y C, Zheng J Y 2011 Acta Phys. Sin. 60 074501Google Scholar

    [20]

    Zhong W, Yu A, Liu X, Tong Z, Zhang H 2016 Powder Technol. 302 108Google Scholar

    [21]

    Lu G, Third J R, Müller C R 2015 Chem. Eng. Sci. 127 425Google Scholar

    [22]

    Obermayr M, Dressler K, Vrettos C, Eberhard P 2013 Comput. Geotech. 49 299Google Scholar

    [23]

    Govender N, Wilke D N, Kok S 2015 Appl. Math. Comput. 267 810

    [24]

    刘璐, 季顺迎 2019 中国科学: 物理学 力学 天文学 49 064601

    Liu L, Ji S Y 2019 Sci. Sin.: Phys. Mech. Astron. 49 064601

    [25]

    王嗣强, 季顺迎 2018 物理学报 67 094501Google Scholar

    Wang S Q, Ji S Y 2018 Acta Phys. Sin. 67 094501Google Scholar

    [26]

    Garboczi E J, Bullard J W 2017 Adv. Powder Technol. 28 325Google Scholar

    [27]

    Gui N, Yang X, Tu J, Jiang S 2017 Powder Technol. 318 248Google Scholar

    [28]

    Ma H, Zhao Y 2017 Chem. Eng. Sci. 172 636Google Scholar

    [29]

    Ma H, Zhao Y 2018 Granul. Matter 20 41Google Scholar

    [30]

    Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C 2010 Chem. Eng. Sci. 65 5863Google Scholar

    [31]

    You Y, Zhao Y 2018 Powder Technol. 331 179Google Scholar

    [32]

    Barr 1981 IEEE Comput. Graph. Appl. 1 11Google Scholar

    [33]

    Soltanbeigi B, Podlozhnyuk A, Papanicolopulos S A, Kloss C, Pirker S, Ooi J Y 2018 Powder Technol. 329 288Google Scholar

    [34]

    Houlsby G T 2009 Powder Technol. 36 953

    [35]

    Podlozhnyuk A, Pirker S, Kloss C 2016 Comput. Part. Mech. 4 101

    [36]

    Zhou Z Y, Zou R P, Pinson D, Yu A B 2011 Ind. Eng. Chem. Res. 50 9787Google Scholar

    [37]

    He S Y, Gan J Q, Pinson D, Zhou Z Y 2019 Powder Technol. 341 157Google Scholar

    [38]

    Goldman R 2005 Comput. Aided Geom. D 22 632Google Scholar

    [39]

    Lacey P M C 1954 J. Chem. Technol. Biot. 4 257

    [40]

    Jiang M, Zhao Y, Liu G, Zheng J 2011 Particuology 9 270Google Scholar

    [41]

    He S, Gan J, Pinson D, Zhou Z 2017 EPJ Web of Conferences 140 06018Google Scholar

    [42]

    Donev A, Cisse I, Sachs D, Variano E A, Stillinger F H, Connelly R, Torquato S, Chaikin P M 2004 Science 303 990Google Scholar

    [43]

    Delaney G W, Cleary P W 2010 Europhys. Lett. 89 34002Google Scholar

  • [1] 曹明鹏, 吴晓鹏, 管宏山, 单光宝, 周斌, 杨力宏, 杨银堂. 基于对偶单元法的三维集成微系统电热耦合分析. 物理学报, 2021, 70(7): 074401. doi: 10.7498/aps.70.20201628
    [2] 魏峰, 金亮, 柳军, 丁峰, 郑新萍. 基于一种改进的虚拟单元法模拟包含静止/运动边界的流动问题. 物理学报, 2019, 68(12): 124703. doi: 10.7498/aps.68.20190013
    [3] 孙艳丽, 王华光, 张泽新. 椭球与圆球混合胶体体系的玻璃化转变. 物理学报, 2018, 67(10): 106401. doi: 10.7498/aps.67.20180264
    [4] 王嗣强, 季顺迎. 基于超二次曲面的颗粒材料缓冲性能离散元分析. 物理学报, 2018, 67(9): 094501. doi: 10.7498/aps.67.20172549
    [5] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟. 物理学报, 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [6] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [7] 李树忱, 平洋, 李术才, 寇强, 马腾飞, 冯丙阳. 基于流形覆盖的岩体宏细观破裂的颗粒离散元法. 物理学报, 2014, 63(5): 050202. doi: 10.7498/aps.63.050202
    [8] 王岩松, 高劲松, 徐念喜, 汤洋, 陈新. 具有陡降特性的新型混合单元频率选择表面. 物理学报, 2014, 63(7): 078402. doi: 10.7498/aps.63.078402
    [9] 赵啦啦, 赵跃民, 刘初升, 李珺. 湿颗粒堆力学特性的离散元法模拟研究. 物理学报, 2014, 63(3): 034501. doi: 10.7498/aps.63.034501
    [10] 于万波, 周洋. 空间单位区域双二次有理贝赛尔曲面混沌特性研究. 物理学报, 2013, 62(22): 220501. doi: 10.7498/aps.62.220501
    [11] 危卫, 鲁录义, 顾兆林. 风沙运动的电场-流场耦合模型及气固两相流数值模拟. 物理学报, 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [12] 王爽, 郑洲顺, 周文. 粉末高速压制成形过程中的应力波分析. 物理学报, 2011, 60(12): 128101. doi: 10.7498/aps.60.128101
    [13] 高红利, 赵永志, 刘格思, 陈友川, 郑津洋. 阻尼对水平滚筒内二元颗粒体系径向分离模式形成的影响. 物理学报, 2011, 60(7): 074501. doi: 10.7498/aps.60.074501
    [14] 高红利, 陈友川, 赵永志, 郑津洋. 薄滚筒内二元湿颗粒体系混合行为的离散单元模拟研究. 物理学报, 2011, 60(12): 124501. doi: 10.7498/aps.60.124501
    [15] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [16] 赵永志, 张宪旗, 刘延雷, 郑津洋. 滚筒内非等粒径二元颗粒体系增混机理研究. 物理学报, 2009, 58(12): 8386-8393. doi: 10.7498/aps.58.8386
    [17] 赵永志, 江茂强, 徐平, 郑津洋. 颗粒堆内微观力学结构的离散元模拟研究. 物理学报, 2009, 58(3): 1819-1825. doi: 10.7498/aps.58.1819
    [18] 彭 政, 厚美瑛, 史庆藩, 陆坤权. 颗粒介质的离散态特性研究. 物理学报, 2007, 56(2): 1195-1202. doi: 10.7498/aps.56.1195
    [19] 秦义校, 程玉民. 弹性力学的重构核粒子边界无单元法. 物理学报, 2006, 55(7): 3215-3222. doi: 10.7498/aps.55.3215
    [20] 李乐, 俞公达, 董抒雁, 王恭明, 章志鸣. 光学二次谐波法研究银表面吸附吡啶分子的特性. 物理学报, 1989, 38(2): 301-306. doi: 10.7498/aps.38.301
计量
  • 文章访问数:  10097
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-13
  • 修回日期:  2019-08-12
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回