搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维电磁扩散场数值模拟及磁化效应的影响

李志旋 岳明鑫 周官群

引用本文:
Citation:

三维电磁扩散场数值模拟及磁化效应的影响

李志旋, 岳明鑫, 周官群

Three-dimensional numerical simulation of electromagnetic diffusion problem and magnetization effects

Li Zhi-Xuan, Yue Ming-Xin, Zhou Guan-Qun
PDF
HTML
导出引用
  • 采用矢量有限元法实现了三维电磁扩散场数值模拟, 并成功将其应用在大地电磁的正演研究中. 为灵活精确地拟合起伏地形和地下不规则构造, 采用由不规则四面体单元组成的非结构化网格, 可根据模型设计的需要调整网格的大小. 引入了基于二次场理论, 将解析的一次场从总场中扣除, 直接计算二次场, 使得误差仅局限于相对较小的二次场, 以提高总场计算精度. 常规的节点有限元法不满足电性分界面上法向电场不连续和无源区单元内电流密度无散, 违反麦克斯韦方程组. 为克服节点有限元法的弊端, 使用矢量有限元法求解基于二次电场的偏微分方程. 另外, 在算法设计中, 考虑了磁导率参数的变化, 可以模拟磁导率不均匀的模型. 通过与COMMEMI模型已发表的结果对比, 证明了本文算法的正确性和精确性. 为突显非结构网格优势, 计算了椭球异常体模型和任意地形模型的MT响应, 并详细讨论了地形和磁化效应对三维数值模拟结果的影响.
    We present a newly developed algorithm for three-dimensional (3D) magnetotelluric model based on the vector finite element method. In this paper, unstructured grids which are composed of irregular tetrahedrons are used in our finite element model, which can be refined locally and adaptively according to the complex geometry of computational domain or subsurface structure. For obtaining more accurate solutions, secondary field rather than total field is numerically computed, which makes the errors limited to relatively small secondary field. Traditional node-based finite element method does not satisfy the condition that the normal electrical field is discontinuous at the interface of electric separatrix and the electrical current density is divergence-free throughout the regions without source, which obviously violates Maxwell equations. In order to overcome these drawbacks of node-based finite element, vector finite element method is employed to solve the secondary field-based partial differential equation. Moreover, in this study, the heterogeneous permeability is taken into consideration in our algorithm, as a consequence, which can deal with heterogeneous permeability model. The accuracy of our approach is verified by comparing with previously published numerical simulations of a COMMEMI-3D model. The advantages of our approach are also illustrated by the numerical simulations of model with arbitrary topography and complicated anomalous body. In addition, the simulation results of the irregular anomaly and the complex model of arbitrary terrain are both ideal results. It proves that the effect of 3D terrain is more serious and complex than that of two-dimensional (2D) terrain, and dealing with 3D models or data with 2D algorithm may bring in large errors. In the area where the magnetic permeability is abnormal, the magnetic permeability has an important influence on the numerical simulation results, and the magnetic permeability must be treated as an independent parameter in the magnetotellurics survey.
      通信作者: 岳明鑫, staryue@mail.ustc.edu.cn
    • 基金项目: 长江大学油气资源与勘探技术教育部重点实验室开放基金(批准号: K2016-08)和贵州省科技计划项目(批准号: [2018]3003-2)资助的课题.
      Corresponding author: Yue Ming-Xin, staryue@mail.ustc.edu.cn
    • Funds: Project supported by the Open Fund of Key Laboratory of Exploration Technologies for Oil and Gas Resource (Yangtze University), Ministry of Education (Grant No. K2016-08) and the Technology Research and Development Program of Guizhou, China (Grant No. [2018]3003-2).
    [1]

    Hohmann G W 1983 Surv. Geophys. 6 27Google Scholar

    [2]

    Zhdanov M S, Lee S K, Yoshioka K 2006 Geophysics 71 G333Google Scholar

    [3]

    陈桂波, 汪宏年, 姚敬金, 韩子夜 2009 物理学报 58 3848Google Scholar

    Chen G B, Wang H N, Yao J J, Han Z Y 2009 Acta Phys. Sin. 58 3848Google Scholar

    [4]

    谭捍东, 余钦范, John B 2003 地球物理学报 46 705Google Scholar

    Tang H D, Yu Q F, John B 2003 Chin. J. Geophys. 46 705Google Scholar

    [5]

    Streich R 2009 Geophysics 74 F95Google Scholar

    [6]

    Smith J T 1996 Geophysics 61 1308Google Scholar

    [7]

    Wang W, Wu X P, Spitzer K 2013 Geophys. J. Int. 193 734Google Scholar

    [8]

    Coggon J H 1971 Geophysics 36 132Google Scholar

    [9]

    Fox R C, Hohmann G W, Killpack T J 1980 Geophysics 45 75Google Scholar

    [10]

    Wannamaker P E, Stodt J A, Rijo L 1987 Geophys. J. Int. 88 277Google Scholar

    [11]

    李勇, 吴小平, 林品荣 2013 地球物理学进展 27 2452

    Li Y, Wu X P, Lin P R 2013 Prog. Geophys. 27 2452

    [12]

    Liu C, Ren Z, Tang J 2008 Appl. Geophys. 5 170Google Scholar

    [13]

    Key K, Weiss C 2006 Geophysics 71 G291Google Scholar

    [14]

    Franke A, Börner R U, Spitzer K 2007 Geophys. J. Int. 171 71Google Scholar

    [15]

    Jin J 2002 The Finite Element Method in Electromagnetics (New York: John Wiley & Sons)

    [16]

    柳建新, 童孝忠, 郭荣文 2012 大地电磁测深法勘探 (北京: 科学出版社) 第48−50页

    Liu J X, Tong X Z, Guo R W 2012 The Magnetotelluric Sounding Method (Beijing: Science Press) pp48−50

    [17]

    Unsworth M J 2010 Surv. Geophys. 31 137Google Scholar

    [18]

    Rao C K, Jones A G, Moorkamp M 2014 Geophys. J. Int. 198 737Google Scholar

    [19]

    Juanatey M, Hubert J, Tryggvason A 2013 Geophys. Prospect. 61 200Google Scholar

    [20]

    Egger A E, Jonathan M G, Glen J M G 2014 Geol. Soc. Am. Bull. 126 523Google Scholar

    [21]

    Abdelzaher M, Nishijima J, Saibi H 2012 Pure Appl. Geophys. 169 1679Google Scholar

    [22]

    徐世浙 1994 地球物理中的有限单元法 (北京: 科学出版社) 第220−224页

    Xu S Z 1994 FEM in Geophysics (Beijing: Science Press) pp220−224 (in Chinese)

    [23]

    Farquharson C G, Miensopust M P 2011 J, Appl. Geophys. 75 699Google Scholar

    [24]

    Zhdanov M S, Varentsov I M, Weaver J T 1997 J. Appl. Geophys. 37 133Google Scholar

    [25]

    Mitsuhata Y, Uchida T 2004 Geophysics 69 108Google Scholar

    [26]

    Ren Z, Kalscheuer, Greenhalgh S 2014 Geophysics 79 E255Google Scholar

    [27]

    Mukherjee S, Everett M E 2011 Geophysics 76 F215Google Scholar

  • 图 1  背景模型示意图

    Fig. 1.  Schematic diagram for background model.

    图 2  四面体单元及其棱边编号示意图

    Fig. 2.  Schematic diagram for tetrahedral element and edge numbers.

    图 3  一维层状介质模型

    Fig. 3.  One-dimensional layered medium model.

    图 4  基于总场和二次场的二次插值的模拟结果与解析解的对比T为周期) (a) 视电阻率${\rho _{\rm{s}}}$; (b) 相位$\phi $

    Fig. 4.  Comparisons of modelling results of quadratic interpolation and analytical solutions based on total fields and secondary fields: (a) Apparent resistivity ${\rho _{\rm{s}}}$; (b) phase $\phi $.

    图 5  COMMEMI-3D1模型, 其中(a)图中虚线为xy测线

    Fig. 5.  COMMEMI-3D1 model. The dashed lines in (a) are the x and y survey lines.

    图 6  (a), (b) x和(c), (d) y测线模拟结果和Zhdanov等[24]的结果对比(剖面为0.1 Hz)

    Fig. 6.  Comparisons of modelling results and Zhdanov et al[24] of (a), (b) x survey line and and (c), (d) y survey line (profile is 0.1 Hz).

    图 7  (a), (b) x和(c), (d) y测线模拟结果和Zhdanov等[24]的结果对比(剖面为10 Hz)

    Fig. 7.  Comparisons of modelling results and Zhdanov et al[24] of (a), (b) x survey line and and (c), (d) y survey line (profile is 10 Hz).

    图 8  COMMEMI-3D2模型

    Fig. 8.  COMMEMI-3D2 model.

    图 9  模拟结果和$T {\text -} \varOmega $算法的结果[25]对比(剖面为0.001 Hz)(a) 视电阻率; (b)相位

    Fig. 9.  Comparisons of modelling results and $T {\text -} \varOmega $ algorithm results[25] (profile is 10 Hz): (a) Apparent resistivity; (b) phase.

    图 10  椭球体模型 (a) xy剖面; (b) xz剖面

    Fig. 10.  Ellipsoidal model: (a) xy profile; (b) xz profile.

    图 11  椭球体模型模拟结果切片图 (a) XY模式视电阻率; (b) YX模式视电阻率; (c) XY模式相位; (d) YX模式相位

    Fig. 11.  Slices of modelling results for ellipse model: (a) XY-mode apparent resistivities; (b) YX-mode apparent resistivities; (c) XY-mode phase; (d) YX-mode phase.

    图 12  二维纯地形模型

    Fig. 12.  Two-dimensional pure topographical model.

    图 13  三维和二维模拟结果对比

    Fig. 13.  Comparisions of three-dimensional and two-dimensional modelling results.

    图 14  山峰模型及其非结构化网格剖分(左图点为测线)

    Fig. 14.  Peak model and discretization using unstructured grids (the points in left diagram are survey line).

    图 15  三维和二维模拟结果对比 (a), (b)山峰模型; (c), (d)山谷模型

    Fig. 15.  Comparisions of three-dimensional and two-dimensional modelling results: (a), (b) Peak model; (c), (d) valley model.

    图 16  不同磁导率模拟结果对比 (a), (b)无电性异常模型; (c), (d)含电性异常模型

    Fig. 16.  Comparisons of modelling results for different magnetic permeability: (a), (b) Model without electrical anomaly; (c), (d) model with electrical anomaly.

  • [1]

    Hohmann G W 1983 Surv. Geophys. 6 27Google Scholar

    [2]

    Zhdanov M S, Lee S K, Yoshioka K 2006 Geophysics 71 G333Google Scholar

    [3]

    陈桂波, 汪宏年, 姚敬金, 韩子夜 2009 物理学报 58 3848Google Scholar

    Chen G B, Wang H N, Yao J J, Han Z Y 2009 Acta Phys. Sin. 58 3848Google Scholar

    [4]

    谭捍东, 余钦范, John B 2003 地球物理学报 46 705Google Scholar

    Tang H D, Yu Q F, John B 2003 Chin. J. Geophys. 46 705Google Scholar

    [5]

    Streich R 2009 Geophysics 74 F95Google Scholar

    [6]

    Smith J T 1996 Geophysics 61 1308Google Scholar

    [7]

    Wang W, Wu X P, Spitzer K 2013 Geophys. J. Int. 193 734Google Scholar

    [8]

    Coggon J H 1971 Geophysics 36 132Google Scholar

    [9]

    Fox R C, Hohmann G W, Killpack T J 1980 Geophysics 45 75Google Scholar

    [10]

    Wannamaker P E, Stodt J A, Rijo L 1987 Geophys. J. Int. 88 277Google Scholar

    [11]

    李勇, 吴小平, 林品荣 2013 地球物理学进展 27 2452

    Li Y, Wu X P, Lin P R 2013 Prog. Geophys. 27 2452

    [12]

    Liu C, Ren Z, Tang J 2008 Appl. Geophys. 5 170Google Scholar

    [13]

    Key K, Weiss C 2006 Geophysics 71 G291Google Scholar

    [14]

    Franke A, Börner R U, Spitzer K 2007 Geophys. J. Int. 171 71Google Scholar

    [15]

    Jin J 2002 The Finite Element Method in Electromagnetics (New York: John Wiley & Sons)

    [16]

    柳建新, 童孝忠, 郭荣文 2012 大地电磁测深法勘探 (北京: 科学出版社) 第48−50页

    Liu J X, Tong X Z, Guo R W 2012 The Magnetotelluric Sounding Method (Beijing: Science Press) pp48−50

    [17]

    Unsworth M J 2010 Surv. Geophys. 31 137Google Scholar

    [18]

    Rao C K, Jones A G, Moorkamp M 2014 Geophys. J. Int. 198 737Google Scholar

    [19]

    Juanatey M, Hubert J, Tryggvason A 2013 Geophys. Prospect. 61 200Google Scholar

    [20]

    Egger A E, Jonathan M G, Glen J M G 2014 Geol. Soc. Am. Bull. 126 523Google Scholar

    [21]

    Abdelzaher M, Nishijima J, Saibi H 2012 Pure Appl. Geophys. 169 1679Google Scholar

    [22]

    徐世浙 1994 地球物理中的有限单元法 (北京: 科学出版社) 第220−224页

    Xu S Z 1994 FEM in Geophysics (Beijing: Science Press) pp220−224 (in Chinese)

    [23]

    Farquharson C G, Miensopust M P 2011 J, Appl. Geophys. 75 699Google Scholar

    [24]

    Zhdanov M S, Varentsov I M, Weaver J T 1997 J. Appl. Geophys. 37 133Google Scholar

    [25]

    Mitsuhata Y, Uchida T 2004 Geophysics 69 108Google Scholar

    [26]

    Ren Z, Kalscheuer, Greenhalgh S 2014 Geophysics 79 E255Google Scholar

    [27]

    Mukherjee S, Everett M E 2011 Geophysics 76 F215Google Scholar

  • [1] 张幸, 刘玉林, 李刚, 燕少安, 肖永光, 唐明华. 基于55 nm DICE结构的单粒子翻转效应模拟研究. 物理学报, 2024, 73(6): 066103. doi: 10.7498/aps.73.20231564
    [2] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟. 物理学报, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [3] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟. 物理学报, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [4] 梁煜, 关奔, 翟志刚, 罗喜胜. 激波汇聚效应对球形气泡演化影响的数值研究. 物理学报, 2017, 66(6): 064701. doi: 10.7498/aps.66.064701
    [5] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [6] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [7] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [8] 李晋, 汤井田, 王玲, 肖晓, 张林成. 基于信号子空间增强和端点检测的大地电磁噪声压制. 物理学报, 2014, 63(1): 019101. doi: 10.7498/aps.63.019101
    [9] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究. 物理学报, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [10] 霍光谱, 胡祥云, 方慧, 黄一凡. 层状各向异性介质大地电磁联合反演研究. 物理学报, 2012, 61(12): 129101. doi: 10.7498/aps.61.129101
    [11] 王蓬, 田修波, 汪志健, 巩春志, 杨士勤. 有限尺寸方靶等离子体离子注入动力学的三维粒子模拟研究. 物理学报, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [12] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [13] 朱昌盛, 王军伟, 王智平, 冯力. 受迫流动下的枝晶生长相场法模拟研究. 物理学报, 2010, 59(10): 7417-7423. doi: 10.7498/aps.59.7417
    [14] 赵啦啦, 刘初升, 闫俊霞, 徐志鹏. 颗粒分层过程三维离散元法模拟研究. 物理学报, 2010, 59(3): 1870-1876. doi: 10.7498/aps.59.1870
    [15] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟. 物理学报, 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [16] 胡 玥, 饶海波, 李君飞. ITO/有机半导体/金属结构OLED器件的数值模拟. 物理学报, 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
    [17] 江慧丰, 张青川, 陈忠家, 伍小平. 退火铝合金中Portevin-Le Chatelier效应的数值模拟研究. 物理学报, 2006, 55(6): 2856-2859. doi: 10.7498/aps.55.2856
    [18] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [19] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  7904
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-21
  • 修回日期:  2018-12-03
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回