搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同晶粒度高纯铜层裂损伤演化的有限元模拟

林茜 谢普初 胡建波 张凤国 王裴 王永刚

引用本文:
Citation:

不同晶粒度高纯铜层裂损伤演化的有限元模拟

林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚

Numerical simulation on dynamic damage evolution of high pure copper with different grain sizes

Lin Qian, Xie Pu-Chu, Hu Jian-Bo, Zhang Feng-Guo, Wang Pei, Wang Yong-Gang
PDF
HTML
导出引用
  • 采用Voronoi方法构建了50, 130和200 µm三种晶粒度的高纯铜靶板, 在晶界处随机预制损伤成核点, 建立了平板撞击高纯铜靶板的二维轴对称计算模型, 研究了晶粒度和加载应力对高纯铜层裂宏观力学响应和细观损伤演化的影响. 基于自由面速度剖面特征分析, 揭示了晶粒度和加载应力幅值对Pull-back速度回跳点位置、速度回跳斜率及回跳幅值的影响规律, 论证了层裂强度与损伤区拉伸应力峰值相对应 本质上表征微损伤早期长大临界应力; 基于损伤演化云图特征分析, 讨论了长大和聚集过程中微孔洞周围局域化塑性应变场的演变, 揭示了晶粒度和加载应力对微孔洞聚集和应力松弛行为的影响. 计算结果再现了层裂实验中材料内部的微孔洞长大、聚集的细观物理过程, 进一步揭示其与宏观力学响应之间的内禀关系, 这对认识层裂损伤演化机制和理论模型构建具有重要的意义.
    High-purity (HP) copper targets with grain sizes of 50, 130 and 200 μm are constructed by using the Voronoi method. Damage nucleation points are randomly prefabricated at the grain boundaries. A two-dimensional axisymmetric finite element model is established to simulate the spallation experiment of HP copper target. The effects of grain size and loading stress on the macro- mechanical response and meso-damage evolution of HP copper spallation are studied and compared with the relevant experimental results. Based on the analysis of free surface velocity profiles, the effects of grain size on the location of pull back velocity rebound point, velocity rebound slope and velocity rebound amplitude are revealed. It is demonstrated that the spalling strength corresponds to the peak value of tensile stress in the damage zone, which essentially represents the critical stress of micro damage nucleation or early growth. Based on the characteristic analysis of damage evolution nephogram, the evolution process of localized plastic strain field around the micro-voids in the growth and coalescence process is reproduced, and the strong dependence of micro-void coalescence behavior on grain size is clarified. The loading stress amplitude has little effect on the location of pull back velocity rebound point, but has a significant effect on the growth and coalescence behavior of micro-voids. The slope and amplitude of pull back velocity rebound increase with loading stress increasing, which is consistent with the relevant experimental result. With the increase of the loading stress, the micro-voids grow from independent growth to coalescence, thus forming spalling surface. The physical process of damage evolution determines the wave oscillation characteristics after the pull-back rebound point. The numerical simulation results reproduce the physical process of damage evolution and its influence on the macroscopic mechanical response, which is of great significance for further understanding spall damage evolution mechanism and theoretical model construction.
      通信作者: 王永刚, wangyonggang@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11972202)和国防基础科研科学挑战专题(批准号: TZ2018001)资助的课题
      Corresponding author: Wang Yong-Gang, wangyonggang@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11972202) and the National Defense Basic Scientific Science Challenge Project, China (Grant No. TZ2018001)
    [1]

    Antoun T H, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture (New York: Springer-Verlag)

    [2]

    Koller D D, Hixson R S 2005 J. Appl. Phys. 98 103518Google Scholar

    [3]

    彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2014 物理学报 63 196202Google Scholar

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2014 Acta Phys. Sin. 63 196202Google Scholar

    [4]

    Johnson J N, Gray G T, Bourne N K 1999 J. Appl. Phys. 86 4892Google Scholar

    [5]

    Kanel G, Razorenov S, Bogatch A, Utkin A, Grady D 1997 Int. J. Impact. Eng. 20 467Google Scholar

    [6]

    Escobedo J P, Dennis-Koller D, Ceretta E K, Patterson B M, Bronkhorst C A, Hanson BL, Tonks D, Lebensohn R A 2011 J. Appl. Phys. 110 033513Google Scholar

    [7]

    Wang Y G, Qi M L, He H L, Wang L L 2014 Mech. Mater. 69 270Google Scholar

    [8]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 物理学报 64 054601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 054601Google Scholar

    [9]

    Lieberman E J, Lebensohn R A, Menasche D B, Bronkhorst C A, Rollett A D 2016 Acta Mater. 116 270Google Scholar

    [10]

    Turley W D, Fensin S J, Hixson R S, Jones R D, La Lone M B, Stevens G D, Thomas S A, Veeser L R 2018 J. Appl. Phys. 123 055102Google Scholar

    [11]

    Johnson J N 1981 J. Appl. Phys. 52 2812Google Scholar

    [12]

    Moninari A, Wright TW 2005 J. Mech. Phys. Solids 53 1476Google Scholar

    [13]

    Lubarda V A, Schneider M S, Kalantar D H, Remington B R, Meyers M A 2004 Acta Mater. 52 1397Google Scholar

    [14]

    Jacques N, Czarnota C, Mercier S, Molinari A 2015 Int. J. Fract. 162 159

    [15]

    Wilkerson J W, Ramesh K T 2016 J. Mech. Phys. Solids 86 94Google Scholar

    [16]

    Wilkerson J W 2017 Int J. Plast. 95 21Google Scholar

    [17]

    Zurek A K, Thissell W R, Johnson J N, Tonks D L, Hixson R 1996 J. Mater. Process. Technol. 60 261Google Scholar

    [18]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131Google Scholar

    [19]

    Seppälä ET, Belak J, Rudd R E 2004 Phys. Rev. B 69 134101Google Scholar

    [20]

    Lou S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518Google Scholar

    [21]

    邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4772Google Scholar

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4772Google Scholar

    [22]

    Becker R, LeBlanc M M, Cazamias J U 2007 J. Appl. Phys. 102 093512Google Scholar

    [23]

    Becker R 2017 Int. J. Fract. 208 5Google Scholar

    [24]

    Becker R, Callaghan K 2018 Int. J. Fract. 209 235Google Scholar

    [25]

    Trivedi P B, Asay J R, Gupta Y M, Field D P 2007 J. Appl. Phys. 102 083513Google Scholar

    [26]

    Schwartz A J, Cazamias J U, Fiske P S, Minich R W 2002 AIP Conf. Proc. 620 491Google Scholar

    [27]

    Chen T, Jiang Z X, Peng H, He H L, Wang L L, Wang Y G 2015 Strain 51 190Google Scholar

    [28]

    张凤国, 周洪强 2013 物理学报 62 164601Google Scholar

    Zhang F G, Zhou H Q 2013 Acta Phys. Sin. 62 164601Google Scholar

    [29]

    Johnson G R, Cook W H 1983 Eng. Fract. Mech. 21 541

    [30]

    Novikov S A 1967 J. Appl. Meth. Tech. Phys. 3 109

    [31]

    Chen D N, Yu Y Y, Yin Z H, Wang H R, Liu G Q 2005 Int. J. Impact Eng. 31 811Google Scholar

    [32]

    Kanel G I 2010 Int. J. Fract. 163 173Google Scholar

    [33]

    Seppälä ET, Belak J, Rudd R E 2004 Phys. Rev. Lett. 93 245503Google Scholar

    [34]

    王永刚, 胡剑东, 祁美兰, 贺红亮 2011 物理学报 60 126201Google Scholar

    Wang Y G, Hu J D, Qi M L, He H L 2011 Acta Phys. Sin. 60 126201Google Scholar

  • 图 1  三种晶粒尺寸高纯铜靶体层裂实验的几何建模

    Fig. 1.  Geometric modeling of high purity copper sample with three grain sizes.

    图 2  计算得到自由面速度时程曲线与实验结果的对比

    Fig. 2.  Comparison of simulated free surface velocity profile with the experimental result.

    图 3  不同晶粒度高纯铜靶体的自由面速度时程曲线及局部放大曲线

    Fig. 3.  Free surface velocity profiles of HP copper with different grain sizes.

    图 4  不同晶粒度高纯铜损伤区典型单元的应力时程曲线

    Fig. 4.  Stress profiles of elements in the damage zone of HP copper with different grain sizes.

    图 5  层裂实验中X-t波系图

    Fig. 5.  Schematic diagram of X- t wave interactions in spallation experiment.

    图 6  不同时刻下不同晶粒度高纯铜的细观损伤演化云图

    Fig. 6.  Mesoscopic damage distribution of HP copper with different grain sizes at different times.

    图 7  不同晶粒度高纯铜内部损伤度时程曲线

    Fig. 7.  Damage degree evolution profiles of HP copper with different grain sizes.

    图 8  不同撞击速度下高纯铜自由面速度时程曲线及局部放大

    Fig. 8.  Free surface velocity profiles of HP copper at different impact velocities.

    图 9  不同撞击速度下高纯铜损伤区单元应力时程曲线

    Fig. 9.  Stress profiles of damaged elements in HP copper spallation experiment.

    图 10  不同撞击速度下高纯铜细观损伤演化物理过程 (a) V = 60 m/s; (b) V = 70 m/s; (c) V = 80 m/s; (d) V = 90 m/s; (e) V = 100 m/s

    Fig. 10.  Microscopic damage evolution process of high-purity copper under different impact velocities: (a)V = 60 m/s; (b) V = 70 m/s; (c) V = 80 m/s; (d) V = 90 m/s; (e) V = 100 m/s.

    表 1  高纯铜J-C本构、损伤断裂及状态方程参数[29]

    Table 1.  Parameters of equation of state for high-purity copper[29].

    ρ/(kg·m–3)A/MPaB/MPaCmn$ {\dot{\varepsilon }}_{0} $TroomTmelt
    8910902920.0251.090.3113001356
    $ {c}_{0} $/(m·s–1)s$ {\varGamma }_{0} $$ G/\mathrm{G}\mathrm{P}\mathrm{a} $d1d2d3d4d5
    39101.512471.084.893.030.0141.12
    下载: 导出CSV
  • [1]

    Antoun T H, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture (New York: Springer-Verlag)

    [2]

    Koller D D, Hixson R S 2005 J. Appl. Phys. 98 103518Google Scholar

    [3]

    彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2014 物理学报 63 196202Google Scholar

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2014 Acta Phys. Sin. 63 196202Google Scholar

    [4]

    Johnson J N, Gray G T, Bourne N K 1999 J. Appl. Phys. 86 4892Google Scholar

    [5]

    Kanel G, Razorenov S, Bogatch A, Utkin A, Grady D 1997 Int. J. Impact. Eng. 20 467Google Scholar

    [6]

    Escobedo J P, Dennis-Koller D, Ceretta E K, Patterson B M, Bronkhorst C A, Hanson BL, Tonks D, Lebensohn R A 2011 J. Appl. Phys. 110 033513Google Scholar

    [7]

    Wang Y G, Qi M L, He H L, Wang L L 2014 Mech. Mater. 69 270Google Scholar

    [8]

    裴晓阳, 彭辉, 贺红亮, 李平 2015 物理学报 64 054601Google Scholar

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 054601Google Scholar

    [9]

    Lieberman E J, Lebensohn R A, Menasche D B, Bronkhorst C A, Rollett A D 2016 Acta Mater. 116 270Google Scholar

    [10]

    Turley W D, Fensin S J, Hixson R S, Jones R D, La Lone M B, Stevens G D, Thomas S A, Veeser L R 2018 J. Appl. Phys. 123 055102Google Scholar

    [11]

    Johnson J N 1981 J. Appl. Phys. 52 2812Google Scholar

    [12]

    Moninari A, Wright TW 2005 J. Mech. Phys. Solids 53 1476Google Scholar

    [13]

    Lubarda V A, Schneider M S, Kalantar D H, Remington B R, Meyers M A 2004 Acta Mater. 52 1397Google Scholar

    [14]

    Jacques N, Czarnota C, Mercier S, Molinari A 2015 Int. J. Fract. 162 159

    [15]

    Wilkerson J W, Ramesh K T 2016 J. Mech. Phys. Solids 86 94Google Scholar

    [16]

    Wilkerson J W 2017 Int J. Plast. 95 21Google Scholar

    [17]

    Zurek A K, Thissell W R, Johnson J N, Tonks D L, Hixson R 1996 J. Mater. Process. Technol. 60 261Google Scholar

    [18]

    Wang Y G, He H L, Wang L L 2013 Mech. Mater. 56 131Google Scholar

    [19]

    Seppälä ET, Belak J, Rudd R E 2004 Phys. Rev. B 69 134101Google Scholar

    [20]

    Lou S N, Germann T C, Tonks D L 2009 J. Appl. Phys. 106 123518Google Scholar

    [21]

    邓小良, 祝文军, 宋振飞, 贺红亮, 经福谦 2009 物理学报 58 4772Google Scholar

    Deng X L, Zhu W J, Song Z F, He H L, Jing F Q 2009 Acta Phys. Sin. 58 4772Google Scholar

    [22]

    Becker R, LeBlanc M M, Cazamias J U 2007 J. Appl. Phys. 102 093512Google Scholar

    [23]

    Becker R 2017 Int. J. Fract. 208 5Google Scholar

    [24]

    Becker R, Callaghan K 2018 Int. J. Fract. 209 235Google Scholar

    [25]

    Trivedi P B, Asay J R, Gupta Y M, Field D P 2007 J. Appl. Phys. 102 083513Google Scholar

    [26]

    Schwartz A J, Cazamias J U, Fiske P S, Minich R W 2002 AIP Conf. Proc. 620 491Google Scholar

    [27]

    Chen T, Jiang Z X, Peng H, He H L, Wang L L, Wang Y G 2015 Strain 51 190Google Scholar

    [28]

    张凤国, 周洪强 2013 物理学报 62 164601Google Scholar

    Zhang F G, Zhou H Q 2013 Acta Phys. Sin. 62 164601Google Scholar

    [29]

    Johnson G R, Cook W H 1983 Eng. Fract. Mech. 21 541

    [30]

    Novikov S A 1967 J. Appl. Meth. Tech. Phys. 3 109

    [31]

    Chen D N, Yu Y Y, Yin Z H, Wang H R, Liu G Q 2005 Int. J. Impact Eng. 31 811Google Scholar

    [32]

    Kanel G I 2010 Int. J. Fract. 163 173Google Scholar

    [33]

    Seppälä ET, Belak J, Rudd R E 2004 Phys. Rev. Lett. 93 245503Google Scholar

    [34]

    王永刚, 胡剑东, 祁美兰, 贺红亮 2011 物理学报 60 126201Google Scholar

    Wang Y G, Hu J D, Qi M L, He H L 2011 Acta Phys. Sin. 60 126201Google Scholar

  • [1] 王路生, 罗龙, 刘浩, 杨鑫, 丁军, 宋鹍, 路世青, 黄霞. 冲击速度对单晶镍层裂行为的影响规律及作用机制. 物理学报, 2024, 73(16): 164601. doi: 10.7498/aps.73.20240244
    [2] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [3] 李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟. 物理学报, 2020, 69(9): 098802. doi: 10.7498/aps.69.20191878
    [4] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [5] 谢普初, 汪小松, 胡昌明, 胡建波, 张凤国, 王永刚. 非一维应变冲击加载下高纯铜初始层裂行为. 物理学报, 2020, 69(3): 034601. doi: 10.7498/aps.69.20191104
    [6] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟. 物理学报, 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [7] 梁煜, 关奔, 翟志刚, 罗喜胜. 激波汇聚效应对球形气泡演化影响的数值研究. 物理学报, 2017, 66(6): 064701. doi: 10.7498/aps.66.064701
    [8] 席涛, 范伟, 储根柏, 税敏, 何卫华, 赵永强, 辛建婷, 谷渝秋. 超高应变率载荷下铜材料层裂特性研究. 物理学报, 2017, 66(4): 040202. doi: 10.7498/aps.66.040202
    [9] 裴晓阳, 彭辉, 贺红亮, 李平. 延性金属层裂自由面速度曲线物理涵义解读. 物理学报, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
    [10] 裴晓阳, 彭辉, 贺红亮, 李平. 加载应力幅值对高纯铜动态损伤演化特性研究. 物理学报, 2015, 64(5): 054601. doi: 10.7498/aps.64.054601
    [11] 彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰. 动态损伤演化的空间不连续性实验研究. 物理学报, 2013, 62(22): 226201. doi: 10.7498/aps.62.226201
    [12] 张凤国, 周洪强. 晶粒尺度对延性金属材料层裂损伤的影响. 物理学报, 2013, 62(16): 164601. doi: 10.7498/aps.62.164601
    [13] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高空核爆炸下大气的X射线电离及演化过程数值模拟. 物理学报, 2012, 61(8): 083201. doi: 10.7498/aps.61.083201
    [14] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟. 物理学报, 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [15] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究. 物理学报, 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [16] 王永刚, 胡剑东, 祁美兰, 贺红亮. 基于单孔洞近似的高纯铝部分层裂实验的数值模拟研究. 物理学报, 2011, 60(12): 126201. doi: 10.7498/aps.60.126201
    [17] 王狂飞, 郭景杰, 米国发, 李邦盛, 傅恒志. Ti-45at.% Al合金定向凝固过程中显微组织演化的计算机模拟. 物理学报, 2008, 57(5): 3048-3058. doi: 10.7498/aps.57.3048
    [18] 王永刚, 贺红亮, M. Boustie, T. Sekine. 强激光辐照下纳米晶体铜薄膜层裂破坏的实验研究. 物理学报, 2008, 57(1): 411-415. doi: 10.7498/aps.57.411
    [19] 张远涛, 王德真, 王艳辉. 大气压介质阻挡丝状放电时空演化数值模拟. 物理学报, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [20] 袁行球, 陈重阳, 李 辉, 赵太泽, 郭文康, 须 平. 电子束离子阱中高价态离子演化过程的数值模拟. 物理学报, 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
计量
  • 文章访问数:  5088
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-16
  • 修回日期:  2021-05-15
  • 上网日期:  2021-10-08
  • 刊出日期:  2021-10-20

/

返回文章
返回