搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态损伤演化的空间不连续性实验研究

彭辉 李平 裴晓阳 贺红亮 程和平 祁美兰

引用本文:
Citation:

动态损伤演化的空间不连续性实验研究

彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰

Experimental study of the spatial discontinuity of dynamic damage evolution

Peng Hui, Li Ping, Pei Xiao-Yang, He Hong-Liang, Cheng He-Ping, Qi Mei-Lan
PDF
导出引用
  • 对冲击加载下高纯铝的损伤演化进行了实验研究. 利用基于白光轴向色差的表面轮廓测试技术测试冲击加载“软回收”的样品截面, 对测试结果进行三维重构和损伤量化计算. 结果表明: 受到孔洞形核效应、尺寸效应和应力松弛作用, 在损伤演化早期, 损伤度随着空间的分布是不连续的, 除最大损伤度以外还存在一个次高峰. 在损伤演化后期, 受到贯穿作用的影响, 损伤度增量随空间的分布也是不连续的, 贯穿区域损伤度迅速增加, 损伤度曲线的次高峰特征消失.
    In this paper, the damage evolution of high purity aluminum under shock loading is investigated experimentally. The surface profile measurement technique based on white light axial chromatic aberration is used to measure the cross-section of sample which is soft-recovered from dynamic impact experiments. Then, the cross-section image and 3-D surface topography are obtained by reconstruction of the data, the quantified damage is also calculated based on the data. The results show that in the early stage of damage evolution the spatial distribution of relative void volume is not continuous, which results from nucleation affect, size affect and stress relaxation. The damage curves show not only the maximum damage but also a second peak. In the late stage of damage evolution, the spatial distribution of damage increment is discontinuous, which results from the coalescence of voids. The damage of the coalescence region rapidly increases and the secondary peak of the damage curve disappears.
    • 基金项目: 中国工程物理研究院科学技术发展基金重点项目(批准号: 2011A0201002)、国防基础科学研究计划(批准号: B1520110003)和国家自然科学基金(批准号: 11202196, 11172221)资助的课题.
    • Funds: Project supported by the key Program of the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant No. 2011A0201002), the National Defense Basic Scientific Research Program of China (Grant No. B1520110003), and the National Natural Science Foundation of China (Grant Nos. 11202196, 11172221).
    [1]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture (New York: Springer) pp1–20

    [2]

    Meyers M A, Aimone C T 1983 Prog. Mater. Sci. 28 1

    [3]

    Bread B R, Mader C L, Venable D 1967 J. Appl. Phys. 38 3271

    [4]

    Rinehart J S 1951 J. Appl. Phys. 22 555

    [5]

    Whiteman P 1962 Atomic Weapons Research Establishment Report AWRE-SWAN 10/61

    [6]

    Davison L, Stevens A L 1972 J. Appl. Phys. 43 988

    [7]

    Kanel G I 2010 Int. J. Fracture 163 173

    [8]

    Meyers M A, Traiviratana S, Lubarda V A, Benson D J, Bringa E M 2009 Jom 61 35

    [9]

    Wayne L, Krishnan K, DiGiacomo S, Kovvali N, Peralta P, Luo S N, Greenfield S, Byler D, Paisley D, McClellan K J, Koskelo A, Dickerson R 2010 Scripta Mater. 63 1065

    [10]

    Qi M L, He H L, Yan S L 2007 Acta Phys. Sin. 56 5965 (in Chinese) [祁美兰, 贺红亮, 晏石林 2007 物理学报 56 5965]

    [11]

    Besson J 2009 Int. J. Damage Mech. 19 3

    [12]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253

    [13]

    Molinari A, Wright T W 2005 J. Mech. Phys. Solids 53 1476

    [14]

    Tonks D L, Thissell W R, Schwartz D S 2004 AIP Conference Proceedings 706 507

    [15]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601

    [16]

    Fan D, Qi M L 2011 Adv. Mater. Res. 160–162 434

    [17]

    Qi M L, He H L 2010 Chin. Phys. B 19 036201

    [18]

    Qi M L, Luo C, He H L, Wang Y G, Fan D, Yan S L 2012 J. Appl. Phys. 111 043506

    [19]

    Remington B A, Bazan G, Belak J, Bringa E, Caturla M, Colvin J D 2004 Metall. Mater. Trans. A 35 2587

    [20]

    Pruss C, Ruprecht A, Körner K, Osten W, Lcke P 2005 DGaO Proc. A1 106

    [21]

    Zurek A K, Thissell W R, Trujillo C P, Tonks D L, Henrie B L, Keinigs R K 2003 Los Alamos Sci. 28 111

    [22]

    Dongare A, Rajendran A, LaMattina B, Zikry M, Brenner D 2009 Phys. Rev. B 80 104108

  • [1]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture (New York: Springer) pp1–20

    [2]

    Meyers M A, Aimone C T 1983 Prog. Mater. Sci. 28 1

    [3]

    Bread B R, Mader C L, Venable D 1967 J. Appl. Phys. 38 3271

    [4]

    Rinehart J S 1951 J. Appl. Phys. 22 555

    [5]

    Whiteman P 1962 Atomic Weapons Research Establishment Report AWRE-SWAN 10/61

    [6]

    Davison L, Stevens A L 1972 J. Appl. Phys. 43 988

    [7]

    Kanel G I 2010 Int. J. Fracture 163 173

    [8]

    Meyers M A, Traiviratana S, Lubarda V A, Benson D J, Bringa E M 2009 Jom 61 35

    [9]

    Wayne L, Krishnan K, DiGiacomo S, Kovvali N, Peralta P, Luo S N, Greenfield S, Byler D, Paisley D, McClellan K J, Koskelo A, Dickerson R 2010 Scripta Mater. 63 1065

    [10]

    Qi M L, He H L, Yan S L 2007 Acta Phys. Sin. 56 5965 (in Chinese) [祁美兰, 贺红亮, 晏石林 2007 物理学报 56 5965]

    [11]

    Besson J 2009 Int. J. Damage Mech. 19 3

    [12]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253

    [13]

    Molinari A, Wright T W 2005 J. Mech. Phys. Solids 53 1476

    [14]

    Tonks D L, Thissell W R, Schwartz D S 2004 AIP Conference Proceedings 706 507

    [15]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601

    [16]

    Fan D, Qi M L 2011 Adv. Mater. Res. 160–162 434

    [17]

    Qi M L, He H L 2010 Chin. Phys. B 19 036201

    [18]

    Qi M L, Luo C, He H L, Wang Y G, Fan D, Yan S L 2012 J. Appl. Phys. 111 043506

    [19]

    Remington B A, Bazan G, Belak J, Bringa E, Caturla M, Colvin J D 2004 Metall. Mater. Trans. A 35 2587

    [20]

    Pruss C, Ruprecht A, Körner K, Osten W, Lcke P 2005 DGaO Proc. A1 106

    [21]

    Zurek A K, Thissell W R, Trujillo C P, Tonks D L, Henrie B L, Keinigs R K 2003 Los Alamos Sci. 28 111

    [22]

    Dongare A, Rajendran A, LaMattina B, Zikry M, Brenner D 2009 Phys. Rev. B 80 104108

  • [1] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [2] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [3] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟. 物理学报, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [4] 谢普初, 汪小松, 胡昌明, 胡建波, 张凤国, 王永刚. 非一维应变冲击加载下高纯铜初始层裂行为. 物理学报, 2020, 69(3): 034601. doi: 10.7498/aps.69.20191104
    [5] 伍友成, 刘高旻, 戴文峰, 高志鹏, 贺红亮, 郝世荣, 邓建军. 冲击波作用下Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性. 物理学报, 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [6] 范伟, 朱斌, 席涛, 李纲, 卢峰, 吴玉迟, 韩丹, 谷渝秋. 利用啁啾脉冲频谱干涉技术研究高应变率载荷下铜膜的动态响应特性. 物理学报, 2016, 65(15): 150602. doi: 10.7498/aps.65.150602
    [7] 王峰, 彭晓世, 梅鲁生, 刘慎业, 蒋小华, 丁永坤. 基于速度干涉仪的冲击波精密调速实验技术研究. 物理学报, 2012, 61(13): 135201. doi: 10.7498/aps.61.135201
    [8] 喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮. 多孔脆性介质冲击波压缩破坏的细观机理和图像. 物理学报, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [9] 王峰, 彭晓世, 刘慎业, 李永升, 蒋小华, 丁永坤. 超高压下冲击波速度直接测量技术. 物理学报, 2011, 60(2): 025202. doi: 10.7498/aps.60.025202
    [10] 王峰, 彭晓世, 刘慎业, 蒋小华, 徐涛, 丁永坤, 张保汉. 三明治靶型在间接驱动冲击波实验中的应用. 物理学报, 2011, 60(11): 115203. doi: 10.7498/aps.60.115203
    [11] 冯宁博, 谷岩, 刘雨生, 聂恒昌, 陈学锋, 王根水, 贺红亮, 董显林. 冲击波加载下孔隙率对Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 铁电陶瓷去极化性能的影响. 物理学报, 2010, 59(12): 8897-8902. doi: 10.7498/aps.59.8897
    [12] 王海燕, 祝文军, 邓小良, 宋振飞, 陈向荣. 冲击加载下铝中氦泡和孔洞的塑性变形特征研究. 物理学报, 2009, 58(2): 1154-1160. doi: 10.7498/aps.58.1154
    [13] 蒋冬冬, 杜金梅, 谷 岩, 冯玉军. 冲击波加载下PZT 95/5铁电陶瓷的电阻率研究. 物理学报, 2008, 57(1): 566-570. doi: 10.7498/aps.57.566
    [14] 韩敬华, 冯国英, 杨李茗, 张秋慧, 谢旭东, 朱启华, 周寿桓. 纳秒激光在K9玻璃中聚焦的损伤形貌研究. 物理学报, 2008, 57(9): 5558-5564. doi: 10.7498/aps.57.5558
    [15] 俞宇颖, 谭 华, 胡建波, 戴诚达, 陈大年, 王焕然. 冲击波作用下铝的等效剪切模量. 物理学报, 2008, 57(4): 2352-2357. doi: 10.7498/aps.57.2352
    [16] 祁美兰, 贺红亮, 晏石林. 动态拉伸加载下高纯铝破坏的临界行为. 物理学报, 2007, 56(10): 5965-5968. doi: 10.7498/aps.56.5965
    [17] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [18] 江少恩, 李文洪, 孙可煦, 蒋小华, 刘永刚, 崔延莉, 陈久森, 丁永坤, 郑志坚. 神光Ⅱ上柱形黑腔辐射驱动冲击波. 物理学报, 2004, 53(10): 3424-3428. doi: 10.7498/aps.53.3424
    [19] 傅思祖, 黄秀光, 吴 江, 王瑞荣, 马民勋, 何钜华, 叶君健, 顾 援. 斜入射激光驱动的冲击波在样品中传播特性的实验研究. 物理学报, 2003, 52(8): 1877-1881. doi: 10.7498/aps.52.1877
    [20] 张杰, 王薇. 冲击波在铝靶中传播的数值模拟研究. 物理学报, 2001, 50(4): 741-747. doi: 10.7498/aps.50.741
计量
  • 文章访问数:  3000
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-27
  • 修回日期:  2013-07-18
  • 刊出日期:  2013-11-05

动态损伤演化的空间不连续性实验研究

  • 1. 北京理工大学, 爆炸科学与技术国家重点实验室, 北京 100081;
  • 2. 中国工程物理研究院流体物理研究所, 冲击波物理与爆轰物理重点实验室, 绵阳 621900;
  • 3. 武汉理工大学理学院, 武汉 430070
    基金项目: 中国工程物理研究院科学技术发展基金重点项目(批准号: 2011A0201002)、国防基础科学研究计划(批准号: B1520110003)和国家自然科学基金(批准号: 11202196, 11172221)资助的课题.

摘要: 对冲击加载下高纯铝的损伤演化进行了实验研究. 利用基于白光轴向色差的表面轮廓测试技术测试冲击加载“软回收”的样品截面, 对测试结果进行三维重构和损伤量化计算. 结果表明: 受到孔洞形核效应、尺寸效应和应力松弛作用, 在损伤演化早期, 损伤度随着空间的分布是不连续的, 除最大损伤度以外还存在一个次高峰. 在损伤演化后期, 受到贯穿作用的影响, 损伤度增量随空间的分布也是不连续的, 贯穿区域损伤度迅速增加, 损伤度曲线的次高峰特征消失.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回