搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加载应力幅值对高纯铜动态损伤演化特性研究

裴晓阳 彭辉 贺红亮 李平

引用本文:
Citation:

加载应力幅值对高纯铜动态损伤演化特性研究

裴晓阳, 彭辉, 贺红亮, 李平

Study on the effect of peak stress on dynamic damage evolution of high pure copper

Pei Xiao-Yang, Peng Hui, He Hong-Liang, Li Ping
PDF
导出引用
  • 研究了加载应力幅值对延性金属高纯无氧铜动态损伤演化特性的影响. 层裂实验在一级轻气炮上开展, 利用不同的飞片击靶速度实现不同加载应力幅值(2.5 GPa, 2.75 GPa和3.75 GPa), 采用DISAR位移干涉诊断技术测量样品自由面的速度剖面, 利用基于白光轴向色差的表面轮廓测试技术测试软回收的样品截面. 结果显示: 随着加载应力幅值的升高, 层裂强度几乎没有变化, 但自由面速度剖面上Pull back信号后的回跳速率和幅值显著增大, 损伤演化速率显著升高.进一步分析表明: 延性金属动态损伤演化过程中微孔洞成核对加载应力幅值单一因素不敏感, 但加载应力幅值是微孔洞长大和聚集的主导因素之一.
    Effects of peak stress on the properties of dynamic damage evolution of oxygen free high-pure copper (OFHC) are investigated. The spall fracture experiments are conducted in gas gun, and the damage evolution process is studied using the time-resolved free-surface velocity interferometry, also the post-experiment metallurgical analysis of the soft-recovered samples. It is indicated that, with the increase of peak stress, the spall strength has little changed, but distinct differences are observed in the magnitude and rate of damage at which the velocity rises to the first peak beyond the minima, and the rate of damage evolution increases remarkably. It is concluded that the peak stress is not sensitive to the nucleation of voids, but is one of the most important factors for the growth of voids.
    • 基金项目: 中国工程物理研究院发展基金(批准号: 2011A 0201002)、国家自然科学基金(批准号: 11202196)和国防基础科研计划(批准号: B1520110003)资助的课题.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2011A0201002), the National Natural Science Foundation of China (Grant No. 11202196), and the National High Technology Research and Development Program of China (Grant No. B1520110003).
    [1]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253

    [2]

    Meyers M A, Aimone C T 1983 Progress in Materials Science 28 1

    [3]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture ( New York: Springer-Verlag)

    [4]

    Koller D D, Hixson R S 2005 J. Appl. Phys. 98 103518

    [5]

    Belak J, Minich R 2003 UCRL-JC-132650

    [6]

    Johnson J N, Gray G T, Bourne N K 1999 J. Appl. Phys. 86 4892

    [7]

    Tuler F R, Butcher B M 1968 Int. J. Fract. Mech. 4 431

    [8]

    Davison L. 1972 J. Appl. Phys. 43 988

    [9]

    Kanel G I, Rasorenov S V, Utkin A V 1995 High-Pressure shock compression of solids II (New York: Springer-Verlag)

    [10]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Sciencep) (in Chinese) [经福谦 1999 实验物态方程导引(北京: 科学出版社)]

    [11]

    Pei X Y 2013 Ph. Dissertation D (Mian Yang: CAEP) (in Chinese) [裴晓阳 2013 博士学位论文 (绵阳: 中国工程物理研究院)]

    [12]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 物理学报 62 226201]

    [13]

    Novikov S A 1967 J. Appl. Meth. Tech. Phys. 3 109

    [14]

    Kanel G, Razorenov S, Bogatch A, Utkin A, Grady D 1997 Int. J. Impact Eng. 20 467

    [15]

    Belak J 1998 Journal of Computer-Aided Materials Desigh 5 193

    [16]

    Zhang F G, Zhou H Q, Zhang G C, Hong T 2011 Acta Phys. Sin. 60 074601 (in Chinese) [张凤国, 周洪强, 张广财, 洪滔 2011 物理学报 60 074601]

    [17]

    Wang Y G, Hu J D, Qi M L, He H L 2011 Acta Phys. Sin. 60 126201 (in Chinese) [王永刚, 胡剑东, 祁美兰, 贺红亮 2011 物理学报 60 126201]

    [18]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601

    [19]

    Qi M L, He H L 2010 Chin. Phys. B 19 036201

  • [1]

    Curran D R, Seaman L, Shockey D A 1987 Phys. Rep. 147 253

    [2]

    Meyers M A, Aimone C T 1983 Progress in Materials Science 28 1

    [3]

    Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V, Utkin A V 2003 Spall Fracture ( New York: Springer-Verlag)

    [4]

    Koller D D, Hixson R S 2005 J. Appl. Phys. 98 103518

    [5]

    Belak J, Minich R 2003 UCRL-JC-132650

    [6]

    Johnson J N, Gray G T, Bourne N K 1999 J. Appl. Phys. 86 4892

    [7]

    Tuler F R, Butcher B M 1968 Int. J. Fract. Mech. 4 431

    [8]

    Davison L. 1972 J. Appl. Phys. 43 988

    [9]

    Kanel G I, Rasorenov S V, Utkin A V 1995 High-Pressure shock compression of solids II (New York: Springer-Verlag)

    [10]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Sciencep) (in Chinese) [经福谦 1999 实验物态方程导引(北京: 科学出版社)]

    [11]

    Pei X Y 2013 Ph. Dissertation D (Mian Yang: CAEP) (in Chinese) [裴晓阳 2013 博士学位论文 (绵阳: 中国工程物理研究院)]

    [12]

    Peng H, Li P, Pei X Y, He H L, Cheng H P, Qi M L 2013 Acta Phys. Sin. 62 226201 (in Chinese) [彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰 2013 物理学报 62 226201]

    [13]

    Novikov S A 1967 J. Appl. Meth. Tech. Phys. 3 109

    [14]

    Kanel G, Razorenov S, Bogatch A, Utkin A, Grady D 1997 Int. J. Impact Eng. 20 467

    [15]

    Belak J 1998 Journal of Computer-Aided Materials Desigh 5 193

    [16]

    Zhang F G, Zhou H Q, Zhang G C, Hong T 2011 Acta Phys. Sin. 60 074601 (in Chinese) [张凤国, 周洪强, 张广财, 洪滔 2011 物理学报 60 074601]

    [17]

    Wang Y G, Hu J D, Qi M L, He H L 2011 Acta Phys. Sin. 60 126201 (in Chinese) [王永刚, 胡剑东, 祁美兰, 贺红亮 2011 物理学报 60 126201]

    [18]

    Zhang F G, Zhou H Q, Hu J, Shao J L, Zhang G C, Hong T, He B 2012 Chin. Phys. B 21 094601

    [19]

    Qi M L, He H L 2010 Chin. Phys. B 19 036201

  • [1] 张凤国, 王言金, 王裴, 王欣欣. 层裂损伤早期微孔洞分布特征的变化规律. 物理学报, 2025, 74(1): . doi: 10.7498/aps.74.20241338
    [2] 王路生, 罗龙, 刘浩, 杨鑫, 丁军, 宋鹍, 路世青, 黄霞. 冲击速度对单晶镍层裂行为的影响规律及作用机制. 物理学报, 2024, 73(16): 164601. doi: 10.7498/aps.73.20240244
    [3] 张凤国, 赵福祺, 刘军, 何安民, 王裴. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模. 物理学报, 2022, 71(3): 034601. doi: 10.7498/aps.71.20210702
    [4] 张凤国. 延性金属层裂强度对温度、晶粒尺寸和加载应变率的依赖特性及其物理建模. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210702
    [5] 林茜, 谢普初, 胡建波, 张凤国, 王裴, 王永刚. 不同晶粒度高纯铜层裂损伤演化的有限元模拟. 物理学报, 2021, 70(20): 204601. doi: 10.7498/aps.70.20210726
    [6] 谢普初, 汪小松, 胡昌明, 胡建波, 张凤国, 王永刚. 非一维应变冲击加载下高纯铜初始层裂行为. 物理学报, 2020, 69(3): 034601. doi: 10.7498/aps.69.20191104
    [7] 张凤国, 刘军, 何安民, 王裴, 王昆, 周洪强, 赵福祺. 层裂损伤孔洞增长模型参数的确定方法及其应用. 物理学报, 2020, 69(20): 204601. doi: 10.7498/aps.69.20200527
    [8] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [9] 席涛, 范伟, 储根柏, 税敏, 何卫华, 赵永强, 辛建婷, 谷渝秋. 超高应变率载荷下铜材料层裂特性研究. 物理学报, 2017, 66(4): 040202. doi: 10.7498/aps.66.040202
    [10] 彭辉, 裴晓阳, 李平, 贺红亮, 柏劲松. 高纯铜初始层裂的微损伤特性研究. 物理学报, 2015, 64(21): 216201. doi: 10.7498/aps.64.216201
    [11] 裴晓阳, 彭辉, 贺红亮, 李平. 延性金属层裂自由面速度曲线物理涵义解读. 物理学报, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
    [12] 彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰. 平面冲击下铜的拉伸应变率相关特性研究. 物理学报, 2014, 63(19): 196202. doi: 10.7498/aps.63.196202
    [13] 张凤国, 周洪强. 晶粒尺度对延性金属材料层裂损伤的影响. 物理学报, 2013, 62(16): 164601. doi: 10.7498/aps.62.164601
    [14] 孙占峰, 贺红亮, 李平, 李庆忠. AD95陶瓷的层裂强度及冲击压缩损伤机理研究. 物理学报, 2012, 61(9): 096201. doi: 10.7498/aps.61.096201
    [15] 张凤国, 周洪强, 张广财, 洪滔. 惯性及弹塑性效应对延性金属材料层裂损伤的影响. 物理学报, 2011, 60(7): 074601. doi: 10.7498/aps.60.074601
    [16] 王永刚, 胡剑东, 祁美兰, 贺红亮. 基于单孔洞近似的高纯铝部分层裂实验的数值模拟研究. 物理学报, 2011, 60(12): 126201. doi: 10.7498/aps.60.126201
    [17] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究. 物理学报, 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [18] 王永刚, 贺红亮, M. Boustie, T. Sekine. 强激光辐照下纳米晶体铜薄膜层裂破坏的实验研究. 物理学报, 2008, 57(1): 411-415. doi: 10.7498/aps.57.411
    [19] 王永刚, 陈登平, 贺红亮, 王礼立, 经福谦. 冲击加载下LY12铝合金的动态屈服强度和层裂强度与温度的相关性. 物理学报, 2006, 55(8): 4202-4207. doi: 10.7498/aps.55.4202
    [20] 罗 晋, 祝文军, 林理彬, 贺红亮, 经福谦. 单晶铜在动态加载下空洞增长的分子动力学研究. 物理学报, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
计量
  • 文章访问数:  6292
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-25
  • 修回日期:  2014-08-25
  • 刊出日期:  2015-03-05

/

返回文章
返回