搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击速度对单晶镍层裂行为的影响规律及作用机制研究

王路生 罗龙 刘浩 杨鑫 丁军 宋鹍 路世青 黄霞

引用本文:
Citation:

冲击速度对单晶镍层裂行为的影响规律及作用机制研究

王路生, 罗龙, 刘浩, 杨鑫, 丁军, 宋鹍, 路世青, 黄霞

Impact Velocity-Dependent Patterns and Mechanisms of Spalling Behavior in Single Crystal Nickel

Wang Lu-Sheng, Luo Long, Liu Hao, Yang Xin, Ding Jun, Song Kun, Lu Shi-Qing, Huang Xia
PDF
导出引用
  • 为了阐明冲击速度对单晶镍冲击层裂行为的影响机理,采用非平衡分子动力学方法获得了不同冲击速度下单晶镍自由面的速度、径向分布函数、原子晶体结构、位错和孔洞演化过程。结果表明单晶镍层裂行为的临界冲击速度为 1.5 km/s,当冲击速度 Up≤1.5 km/s时,层裂机制为经典层裂损伤,而大于 1.5 km/s时表现出微层裂损伤。相比经典层裂,微层裂下孔洞数量显著增加,分布更为分散,应力区域宽。分析了冲击速度对经典层裂损伤行为( Up≤1.5 km/s)的影响,并获得了相应的层裂强度,当冲击速度为 1.3 km/s时,发生层裂强度突变。单晶镍的层裂强度与层错、相变和位错机制共同作用。随着位错形核和发射位错数量增加,导致层裂强度先下降。当冲击速度 Up<1.3 km/s时,层裂损伤主要由层错作用影响;当 Up=1.3 km/s时,层裂强度主要受到层错与相变共同竞争作用;当冲击速度Up>1.3 km/s,层裂强度主要由 BCC相变机制影响 ,其相变机制为相变路径为FCC→BCT→BCC的马氏体相变机制。本文揭示了冲击速度对层裂损伤和断裂影响规律及作用机制,可以为镍基材料在极端冲击条件下的防护应用提供理论基础。
    To reveal the impact velocity (Up) effect on the spalling and fracture behavior of single crystal nickel, a non-equilibrium molecular dynamics approach is performed to investigate the free surface velocity curve, radial distribution function, atomic crystal structures, dislocations, and void evolution process. The results show that the critical Up for spalling behavior in single crystal nickel is 1.5 km/s, the spallation mechanism is classical spallation damage (Up≤1.5 km/s) and micro-spallation damage (Up>1.5 km/s). The number and distribution area, and stress distribution area under micro-spallation damage much higher than those under classical spallation damage. Analyzed the influence of impact velocity on the classical spalling damage behavior (Up ≤ 1.5 km/s) and obtained the corresponding spalling strength, an accident of spalling strength occurs at the Up of 1.3 km/s. The spalling strength of single crystal nickel is influenced by the combined effects of stacking faults, phase transformation, and dislocation mechanisms. The nucleation and emission of dislocations increase lead to a decrease in the spalling strength. When Up <1.3 km/s, spalling damage is primarily influenced by stacking faults. When Up =1.3 km/s, spalling strength is mainly affected by the competition between stacking faults and phase transformation. When Up >1.3 km/s, spalling strength is predominantly influenced by the body-centered cubic (BCC) phase transformation mechanism (transformation path: FCC → BCT → BCC). This study reveals the impact velocitydependent patterns, mechanisms, and effects on spalling damage and fracture, providing a theoretical basis for the protective application of nickel-based materials under extreme impact conditions.
  • [1]

    Tang Y, Wang R X, Xiao B, Zhang Z R, Li S, Qiao J W, Bai S X, Zhang Y, Liaw P K 2023 Progress in Materials Science 135 101090

    [2]

    Arcade S, Paul J H, Juan P E, Wang H X, Oromiehie E, Prusty G B, Phillips A W, John N A S 2023 Composites Part A 173 107674

    [3]

    Wang P F, Xu S L 2022 Advances in Experimental Impact Mechanics (Elsevier) pp41—74

    [4]

    Yu W T, Huang P Z 2018 Acta Mechanica Sinica 50 828 (in Chinese) [余文韬, 黄 佩珍 2018 力学学报 50 828]

    [5]

    Mukherjee T, Elmer J W, Wei H L, Lienert T J, Zhang W, Kou S, DebRoy T 2023 Progress in Materials Science 138 101153

    [6]

    Ogorodnikov V A, Mikhaĭlov A L, Burtsev V V, Lobastov S A, Erunov S V, Romanov A V, Rudnev A V, Kulakov E V, Bazarov Y B, Glushikhin V V, Kalashnik I A, Tsyganov V A, Tkachenko B I 2009 Journal of Experimental and Theoretical Physics 109 530

    [7]

    Huang L Q, Wang J, Momeni A, Wang S F 2021 Trans. Nonferrous Met. Soc. China 31 2116

    [8]

    Curran D R, Seaman L, Shockey D A 1987 Physics Reports 147 253

    [9]

    Ren K R, Liu H Y, Ma R, Chen S, Zhang S Y, Wang R X, Chen R, Tang Y, Li S, Lu F Y 2023 Journal of Materials Science & Technology 161 201

    [10]

    Luo Q S, Kitchen M, Li J B, Li W B, Li Y Z 2023 Wear 523 204779

    [11]

    Zhang W L, Kennedy G B, Muly K, Li P J, Thadhani N N 2020 International Journal of Impact Engineering 146 103725

    [12]

    Cheng J C, Chai H W, Fan G L, Li Z Q, Xie H L, Tan Z Q, Bie B X, Huang J Y, Luo S N 2020 Carbon 170 589

    [13]

    Ren Y, Li Z, Zhang Z Y, Zhang Z Y, Chen R, Li Z Y, Tan C W, Chen P W 2022 Materials Science & Engineering A 860 144320

    [14]

    Molinari A, Wright T W 2005 Journal of the Mechanics and Physics of Solids 53 1476

    [15]

    Luo S N, An Q, Germann T C, Han L B 2009 J. Appl. Phys 106 013502

    [16]

    Liao Y, Xiang M Z, Li G M, Wang K, Zhang X Y, Chen J 2018 Mechanics of Materials 126 13

    [17]

    Wang Y T, Zeng X G, Yang X, Xu T L 2022 Computational Materials Science 201 110870

    [18]

    Liao Y, Xiang M Z, Zeng X G, Chen J 2014 Computational Materials Science 95 89

    [19]

    Schuler H, Mayrhofer C, Thoma K 2006 International Journal of Impact Engineering 32 1635

    [20]

    Li P, Wang L S, Yan S L, Meng M, Zhou Y F, Xue K M 2021 International Journal of Refractory Metals and Hard Materials 94 105376

    [21]

    Xiang M Z, Hu H B, Chen J, Long Y 2013 Modell. Simul. Mater. Sci. Eng. 21 055005

    [22]

    Kadau K, Germann T C, Lomdahl P S, Holian B L 2002 Science 296 1681

    [23]

    Liao Y, Xiang M Z, Zeng X G, Chen J 2015 Mechanics of Materials 84 12

    [24]

    Li W H, Yao X H 2016 Computational Materials Science 124 151

    [25]

    He L, Wang F, Zeng X G, Yang X, Qi Z P 2020 Mechanics of Materials 143 103343

    [26]

    Chen B, Li Y L, Şopu D, Eckert J, Wu W P 2023 International Journal of Plasticity 162 103539

    [27]

    Jiang D D, Shao J L, Wu B, Wang P, He A M 2022 Scripta Materialia 210 114474

    [28]

    Xie H C, Ma Z C, Zhang W, Zhao H W, Ren L Q 2024 Journal of Materials Science & Technology 175 72

    [29]

    Cheng Z D, Zhu J, Sun T Y 2011 Acta Phys. Sin. 60 037504 (in Chinese) [程志 达, 朱静, 孙铁昱 2011 物理学报 60 037504]

    [30]

    Xu S N, Zhang L, Zhang C B, Qi Y 2007 Acta Metallurgica Sinica 43 379 (in Chinese) [徐送宁, 张林, 张彩碚,祁阳 2007 金属学报 43 379]

    [31]

    Liu B B, Chen Y C, Guo L, Li X F, Wang K, Deng H Q, Tian Z, Hu W Y, Xiao S F, Yuan D W 2023 International Journal of Mechanical Sciences 250 108330

    [32]

    Du X, Yuan F P, Xiong Q L, Zhang B, Kan Q H, Zhang X 2022 Acta Mechanica Sinica 54 2152 (in Chinese) [杜欣, 袁福平, 熊启林, 张波, 阚前华, 张旭 2022 力学学报 54 2152]

    [33]

    Chen B, Wu W P, Chen M X 2022 Computational Materials Science 202 111015

    [34]

    Zhou X W, Johnson R A, Wadley H N G 2004 Physical Review B 69 144113

    [35]

    Kedharnath A, Kapoor R, Sarkar A 2021 Computers and Structures 254 106614

    [36]

    Potirniche G P, Horstemeyer M F, Wagner G J, Gullett P M 2006 International Journal of Plasticity 22 257

    [37]

    Wang W D, Yi C L, Fan K Q 2013 Trans. Nonferrous Met. Soc. China 23 3353

    [38]

    Zhou Y, Cai Y, Lu L 2022 Journal of Experimental Mechanics 37 183 (in Chinese) [周延, 蔡洋, 卢磊 2022 实验力学 37 183]

    [39]

    Jian W R, Xie Z C, Xu S Z, Yao X H, Beyerlein I J 2022 Scripta Materialia 209 114379

    [40]

    Wang Y T, Zeng X G, Chen H Y, Yang X, Wang F, QI Z P 2021 Explosion and Shock Waves 41 139 (in Chinese) [王云天, 曾祥国, 陈华燕,杨鑫,王放, 祁忠鹏 2021 爆炸与冲击 41 139]

    [41]

    Yang X, Zhao Han, Gao X J, Chen Z L, Wang F, Zeng X G 2023 Explosion and Shock Waves 43 29 (in Chinese) [杨鑫, 赵晗, 高学军,陈臻林,王放,曾祥 国 2023 爆炸与冲击 43 29]

    [42]

    Zhou T T, He A M, Wang P, Shao J L 2019 Computational Materials Science 162 255

    [43]

    Thürmer D, Zhao S T, Deluigi O R, Stan C, Alhafez I A, Urbassek H M, Meyers M A, Bringa E M, Gunkelmann N 2022 Journal of Alloys and Compounds 895 162567

    [44]

    Wang J N, Wu B, He A M, Wu F C, Wang P, Wu H A 2021 Chinese Journal of High Pressure Physics 35 4 (in Chinese) [王嘉楠,伍鲍,何安民,吴凤超, 王裴,吴恒安 2021 高压物理学报 35 4]

    [45]

    Mescheryakov Y I, Divakov A K, Zhigacheva N I 2000 Shock Waves 10 43

    [46]

    Tang J F, Xiao J C, Deng L, Li W, Zhang X M, Wang L, Xiao S F, Deng H Q, Hu W Y 2018 Physical Chemistry Chemical Physics 20 28039

    [47]

    Wang K, Zhu W J, Xiang M Z, Xu Y, Li G M, Chen J 2019 Modelling and Simulation in Materials Science and Engineering 27 015001

    [48]

    Tuler F R, Butcher B M 1984 International Journal of Fracture 26 322

    [49]

    Pei X Y, Peng H, He H L, Li P 2015 Acta Phys. Sin. 64 034601 (in Chinese) [裴 晓阳, 彭辉, 贺红亮,李平 物理学报 2015 64 034601]

    [50]

    Davison L, Stevens A L 1972 Journal of Applied Physics 43 988

    [51]

    Kanel G I, Rasorenov S V, Utkin A V 1996 High-Pressure Shock Compression of Solids II (New York: Springer-Verlag) pp1—24

    [52]

    Bai Y L, Ke F J, Xia M F 1991 Acta Mechanica Sinica 23 290 (in Chinese) [白以 龙, 柯孚久, 夏蒙棼 1991 力学学报 23 290]

    [53]

    Qiu T, Xiong Y N, Xiao S F, Li X F, Hu W Y, Deng H Q 2017 Computational Materials Science 137 273

    [54]

    Stukowski A, Bulatov V V, Arsenlis A 2012 Modelling and Simulation in Materials Science and Engineering 20 085007

  • [1] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20201861
    [2] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, doi: 10.7498/aps.69.20191877
    [3] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200323
    [4] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, doi: 10.7498/aps.69.20191425
    [5] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, doi: 10.7498/aps.66.146201
    [6] 林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟. 物理学报, doi: 10.7498/aps.64.083601
    [7] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, doi: 10.7498/aps.64.016202
    [8] 裴晓阳, 彭辉, 贺红亮, 李平. 延性金属层裂自由面速度曲线物理涵义解读. 物理学报, doi: 10.7498/aps.64.034601
    [9] 彭辉, 李平, 裴晓阳, 贺红亮, 程和平, 祁美兰. 平面冲击下铜的拉伸应变率相关特性研究. 物理学报, doi: 10.7498/aps.63.196202
    [10] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟. 物理学报, doi: 10.7498/aps.62.056601
    [11] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, doi: 10.7498/aps.61.196201
    [12] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟. 物理学报, doi: 10.7498/aps.61.246501
    [13] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, doi: 10.7498/aps.60.096105
    [14] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究. 物理学报, doi: 10.7498/aps.60.046401
    [15] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, doi: 10.7498/aps.58.1936
    [16] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析. 物理学报, doi: 10.7498/aps.57.1254
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, doi: 10.7498/aps.56.5389
    [18] 邓小良, 祝文军, 贺红亮, 伍登学, 经福谦. 〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为. 物理学报, doi: 10.7498/aps.55.4767
    [19] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, doi: 10.7498/aps.55.5545
    [20] 罗 晋, 祝文军, 林理彬, 贺红亮, 经福谦. 单晶铜在动态加载下空洞增长的分子动力学研究. 物理学报, doi: 10.7498/aps.54.2791
计量
  • 文章访问数:  16
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-07-17

/

返回文章
返回