搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在石英界面处液态水的冲击结构相变

王军国 刘福生 李永宏 张明建 张宁超 薛学东

引用本文:
Citation:

在石英界面处液态水的冲击结构相变

王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东

The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid

Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong
PDF
导出引用
  • 利用轻气炮加载技术和光透射测量技术, 观测了冲击加载过程中水/石英界面处的水结构变化.实验发现,冲击条件(0.5—2 GPa, 335—375 K)下水在液相区内能够发生结构改变且起始于水/石英界面,结构改变的速率和程度与石英界面的特性有关.证实在固/液相边界一定区域内的液态水,在经历高温高压状态的变化中表现出特殊的相转变现象.同时,研究表明液态水结构转变的过程区分为明显的四个动力学阶段.
    We investigate the structural transformations of water at the water/quartz interface under shock compression in ranges from 0.5 to 2 GPa and from 335 to 375 K by techniques of a gas-gun and light transmission tests. The results show that the structural transformation of water occurs in the region of liquid phase, which starts from water/quartz interface at high pressures and temperatures. The transformation rate is related to the property of quartz interface. This structural evolution indicates that a lager number of water molecules undergone transitions in equilibrium behavior. The kinetic process of liquid water structure can be divided into four stages while the structure continues growing to saturation. This new mechanism of structural transformation has immediate implications for water structure transformation in diverse natural environments.
    • 基金项目: 国家自然科学基金(批准号: 10874141, 10974160)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874141, 10974160).
    [1]

    Abramson E H 2007 Phys. Rev. E 76 051203

    [2]

    Bridgman P W 1935 J. Chem. Phys. 3 597

    [3]

    Du Q, Freysz E, Shen Y R 1994 Phys. Rev. Lett. 72 238

    [4]

    Du Q, Freysz E, Shen Y R 1994 Sci. 264 826

    [5]

    Eftekhari-Bafrooei A, Borguet E 2009 J. Am. Chem. Soc. 131 12034

    [6]

    Kim J, Kim G, Cremer P S 2001 Langmuir 17 7255

    [7]

    Hassanali A A, Singer S J 2007 J. Phys. Chem. B 111 11181

    [8]

    Ostroverkhov V, Waychunas G A, Shen Y R 2005 Phys. Rev. Lett. 94 46102

    [9]

    Hass K C, Schneider W F, Curioni A, Andreoni W 1998 Sci. 282 265

    [10]

    Ye S, Nihonyanagi S, Uosaki K 2001 Phys. Chem. Chem. Phys. 3 3463

    [11]

    Lipkowski J, Ross P N 1992 Adsorption of molecules at metal electrodes (1st Ed.) (New York: VCH) p224

    [12]

    Fleischmann M, Hendra P J, Hill I, Pemble M 1981 J. Electroanal. Chem. Int. Electrochem. 117 243

    [13]

    Pettinger B, Philpott M R, Gordon II J G 1981 J. Chem. Phys. 74 934

    [14]

    Ataka K, Yotsuyanagi T, Osawa M 1996 J. Phys. Chem. 100 10664

    [15]

    Toney M F, Howard J N, Richer J, Borges G L, Gordon J G, Melroy O R, Wiesler D G, Yee D, Sorensen L B 1995 Surf. Sci. 335 326

    [16]

    Gragson D E, Richmond G L 1998J. Phys. Chem. B 102 3847

    [17]

    Gragson D E, McCarty B M, Richmond G L 1997 J. Amer. Chem. Soc. 119 6144

    [18]

    chnitzer C, Baldelli S, Campbell D J, Shultz M J 1999 J. Phys. Chem. A 103 6383

    [19]

    Shultz M J, Schnitzer C, Simonelli D, Baldelli S 2000 Int. Rev. Phys. Chem. 19 123

    [20]

    Dolan D H, Gupta Y M 2003 Chem. Phys. Lett. 374 608

    [21]

    Dolan D H, Gupta Y M 2004 J. Chem. Phys. 121 9050

    [22]

    Dolan D H, Johnson J N, Gupta Y M 2005 J. Chem. Phys. 123 064702

    [23]

    Dolan D H, Knudson M D, Hall C A, Deeney C 2007 Nat. Phys. 3 339

    [24]

    Li Y H 2011 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese) [李永宏 2011 博士学位论文 (成都:西南交通大学)]

    [25]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p224 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第 64 页]

    [26]

    Li Y H, Liu F S, Cheng X L, Zhang M J, Xue X D 2011 Acta Phys. Sin. 60 126202 (in Chinese)[李永宏, 刘福生, 程小理, 张明建, 薛学东 2011 物理学报 60 12202]

    [27]

    Goldman N, Reed E J, Kuo I F W, Fried L E, Mundy C J, Curioni A 2009 J. Chem. Phys. 130 124517

    [28]

    Ostroverkhov V, Waychunas G A, Shen Y R 2004 Chem. Phys. Lett. 386 144

    [29]

    Saitta A M, Datchi F 2003 Phys. Rev. E 67 020201

    [30]

    Canpolat M, Starr F W, Scala A, Sadr-Lahijany M R, Mishima O, Havlin S, Stanley H E 1998 Chem. Phys. Lett. 294 9

    [31]

    Li F L, Cui Q L, He Z, Cui T, Zhang J, Zhou Q, Zou G T 2005 J. Chem. Phys. 123 174511

    [32]

    Kawamoto T, Ochiai S, Kagi H 2004 J. Chem. Phys. 120 5867

    [33]

    Matsumoto M, Saito S, Ohmine I 2002 Nat. 416 409

  • [1]

    Abramson E H 2007 Phys. Rev. E 76 051203

    [2]

    Bridgman P W 1935 J. Chem. Phys. 3 597

    [3]

    Du Q, Freysz E, Shen Y R 1994 Phys. Rev. Lett. 72 238

    [4]

    Du Q, Freysz E, Shen Y R 1994 Sci. 264 826

    [5]

    Eftekhari-Bafrooei A, Borguet E 2009 J. Am. Chem. Soc. 131 12034

    [6]

    Kim J, Kim G, Cremer P S 2001 Langmuir 17 7255

    [7]

    Hassanali A A, Singer S J 2007 J. Phys. Chem. B 111 11181

    [8]

    Ostroverkhov V, Waychunas G A, Shen Y R 2005 Phys. Rev. Lett. 94 46102

    [9]

    Hass K C, Schneider W F, Curioni A, Andreoni W 1998 Sci. 282 265

    [10]

    Ye S, Nihonyanagi S, Uosaki K 2001 Phys. Chem. Chem. Phys. 3 3463

    [11]

    Lipkowski J, Ross P N 1992 Adsorption of molecules at metal electrodes (1st Ed.) (New York: VCH) p224

    [12]

    Fleischmann M, Hendra P J, Hill I, Pemble M 1981 J. Electroanal. Chem. Int. Electrochem. 117 243

    [13]

    Pettinger B, Philpott M R, Gordon II J G 1981 J. Chem. Phys. 74 934

    [14]

    Ataka K, Yotsuyanagi T, Osawa M 1996 J. Phys. Chem. 100 10664

    [15]

    Toney M F, Howard J N, Richer J, Borges G L, Gordon J G, Melroy O R, Wiesler D G, Yee D, Sorensen L B 1995 Surf. Sci. 335 326

    [16]

    Gragson D E, Richmond G L 1998J. Phys. Chem. B 102 3847

    [17]

    Gragson D E, McCarty B M, Richmond G L 1997 J. Amer. Chem. Soc. 119 6144

    [18]

    chnitzer C, Baldelli S, Campbell D J, Shultz M J 1999 J. Phys. Chem. A 103 6383

    [19]

    Shultz M J, Schnitzer C, Simonelli D, Baldelli S 2000 Int. Rev. Phys. Chem. 19 123

    [20]

    Dolan D H, Gupta Y M 2003 Chem. Phys. Lett. 374 608

    [21]

    Dolan D H, Gupta Y M 2004 J. Chem. Phys. 121 9050

    [22]

    Dolan D H, Johnson J N, Gupta Y M 2005 J. Chem. Phys. 123 064702

    [23]

    Dolan D H, Knudson M D, Hall C A, Deeney C 2007 Nat. Phys. 3 339

    [24]

    Li Y H 2011 Ph. D. Dissertation (Chengdu: Southwest Jiaotong University) (in Chinese) [李永宏 2011 博士学位论文 (成都:西南交通大学)]

    [25]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p224 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第 64 页]

    [26]

    Li Y H, Liu F S, Cheng X L, Zhang M J, Xue X D 2011 Acta Phys. Sin. 60 126202 (in Chinese)[李永宏, 刘福生, 程小理, 张明建, 薛学东 2011 物理学报 60 12202]

    [27]

    Goldman N, Reed E J, Kuo I F W, Fried L E, Mundy C J, Curioni A 2009 J. Chem. Phys. 130 124517

    [28]

    Ostroverkhov V, Waychunas G A, Shen Y R 2004 Chem. Phys. Lett. 386 144

    [29]

    Saitta A M, Datchi F 2003 Phys. Rev. E 67 020201

    [30]

    Canpolat M, Starr F W, Scala A, Sadr-Lahijany M R, Mishima O, Havlin S, Stanley H E 1998 Chem. Phys. Lett. 294 9

    [31]

    Li F L, Cui Q L, He Z, Cui T, Zhang J, Zhou Q, Zou G T 2005 J. Chem. Phys. 123 174511

    [32]

    Kawamoto T, Ochiai S, Kagi H 2004 J. Chem. Phys. 120 5867

    [33]

    Matsumoto M, Saito S, Ohmine I 2002 Nat. 416 409

  • [1] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响. 物理学报, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系. 物理学报, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [3] 孙志伟, 何燕, 唐元政. 单壁碳纳米管受限空间内水的分布. 物理学报, 2021, 70(6): 060201. doi: 10.7498/aps.70.20201523
    [4] 陆海林, 段芳莉. 硅基材料界面石墨烯片层运动行为及其摩擦特性. 物理学报, 2021, 70(14): 143101. doi: 10.7498/aps.70.20210088
    [5] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [6] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [7] 王文鹏, 刘福生, 张宁超. 冲击加载下液态水的结构相变. 物理学报, 2014, 63(12): 126201. doi: 10.7498/aps.63.126201
    [8] 蒋国平, 郝洪, 曾春航, 郝逸飞, 吴如军, 刘纪超. 冲击作用下的摩擦力效应实验研究. 物理学报, 2013, 62(11): 116203. doi: 10.7498/aps.62.116203
    [9] 张云安, 陶俊勇, 陈循, 刘彬. 水对无定形SiO2拉伸特性影响的反应分子动力学模拟. 物理学报, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [10] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究. 物理学报, 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
    [11] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [12] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究. 物理学报, 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [13] 李永宏, 刘福生, 程小理, 张明建, 薛学东. 冲击加载条件下融石英对水的凝固相变的诱导效应. 物理学报, 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [14] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [15] 张春梅, 边心超, 陈 强, 付亚波, 张跃飞. 微量水对碳纳米管形貌的影响及其机理研究. 物理学报, 2008, 57(7): 4602-4606. doi: 10.7498/aps.57.4602
    [16] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析. 物理学报, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [17] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] 陈 莹, 邱锡钧. 细胞骨架微管中水的电偶极集体辐射. 物理学报, 2003, 52(6): 1554-1560. doi: 10.7498/aps.52.1554
计量
  • 文章访问数:  7095
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-22
  • 修回日期:  2012-03-22

/

返回文章
返回