搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击下铁的各向异性对晶界附近相变的影响

张学阳 胡望宇 戴雄英

引用本文:
Citation:

冲击下铁的各向异性对晶界附近相变的影响

张学阳, 胡望宇, 戴雄英

Influence of iron anisotropy on phase transition near grain boundary under shock

Zhang Xue-Yang, Hu Wang-Yu, Dai Xiong-Ying
PDF
HTML
导出引用
  • 由于铁在国防和工业领域扮演着重要的角色, 因此研究其动态高压下的行为有着重要的意义. 本文拟采用大规模非平衡分子动力学方法研究冲击加载下铁的各向异性在双晶铁中对相变的影响, 通过追踪模型的局域结构、剪切应力分布和冲击后的形貌特点, 分析影响晶界两侧冲击响应的因素. 研究表明, 沿非中心对称晶向冲击可造成对称晶界两侧的相变阈值、相变路径和相变模式出现较大的差异, 考虑到该类型晶界两侧微观结构的对称性, 这种不对称的冲击响应与人们的惯性认知存在着偏差. 本文揭示了晶格的各向异性对冲击加载下晶界两侧的相变有重要的影响, 可以为多晶金属和合金的冲击实验提供一定的理论支持.
    As is well known, iron plays an important role in the fields of national defense and industry, so it is of great significance to study its behavior under dynamic high pressure. As one of the most common defects in metals in nature, grain boundaries have an important influence on the mechanical properties and deformation of materials under shock. This work intends to use large-scale non-equilibrium molecular dynamics simulation to study the influence of iron anisotropy on the phase transition in bicrystal under shock loading. By tracking the local structure, shear stress distribution and morphology characteristics after shock on both sides of the grain boundaries, the factors affecting the response on both sides of the grain boundary are analyzed. Our research result shows that shocking along the non-centrosymmetric grain direction can cause significant differences in the phase transition threshold, path and mode on both sides of the symmetric grain boundary. Especially, the different phase transition dynamic processes on both sides of the sigma11 grain boundary are discussed in detail in this work, which have been rarely discussed in previous studies. Considering the symmetry of the microstructure on both sides of this type of grain boundary, the result of asymmetric shock response is different from people’s inertial cognition. Finally, it is found that the atoms in both models will shift along the direction perpendicular to the shocked direction under shock, indicating that the shock wave generated by the piston method should no longer be simply regarded as one-dimensional when shocked along the non centrosymmetric crystal direction, and the displacement of atoms along the direction perpendicular to the shocked direction is closely related to the symmetry of the crystal, which causes significant differences in shear stress on both sides of the grain boundary and ultimately affects the shock response. This study reveals that the anisotropy of lattice has an important effect on the phase transition on both sides of grain boundaries under shock loading, which can provide theoretical support for the experimental studies of polycrystalline metals and alloys under shock.
      通信作者: 张学阳, xyzhang2012@hnu.edu.cn
    • 基金项目: 计算物理实验室青年基金(批准号: 6142A05QN22011)、湖南省自然科学基金(批准号: 2023JJ40209)和湖南省教育厅重点项目(批准号: 21A0449)资助的课题.
      Corresponding author: Zhang Xue-Yang, xyzhang2012@hnu.edu.cn
    • Funds: Project supported by the LCP Fund for Young Scholar, China (Grant No. 6142A05QN22011), the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ40209), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 21A0449).
    [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291Google Scholar

    [2]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar

    [3]

    Smith R F, Eggert J E, Bolme C A, Collins G W 2011 J. Appl. Phys. 110 123515Google Scholar

    [4]

    de Rességuier T, Hallouin M 1998 J. Appl. Phys. 84 1932Google Scholar

    [5]

    Levitas V I, Javanbakht M 2015 J. Mech. Phys. Solids 82 287Google Scholar

    [6]

    Javanbakht M, Levitas V I 2015 J. Mech. Phys. Solids 82 164Google Scholar

    [7]

    Talonen J, Hänninen H 2007 Acta Mater. 55 6108Google Scholar

    [8]

    Nagy E, Mertinger V, Tranta F, Sólyom J 2003 Mater. Sci. Eng. , A 378 308Google Scholar

    [9]

    Li N, Wang Y D, Liu W J, An Z N, Liu J P, Su R, Li J, Liaw P K 2014 Acta Mater. 64 12Google Scholar

    [10]

    Levitas V I, Ozsoy I B 2009 Int. J. Plast. 25 239Google Scholar

    [11]

    Zarechnyy O M, Levitas V I, Ma Y 2012 J. Appl. Phys. 111 023518Google Scholar

    [12]

    Hawreliak J A, Eldasher B, Lorenzana H, Kimminau G, Higginbotham A, Nagler B, Vinko S M, Murphy W J, Whitcher T, Wark J S 2011 Phys. Rev. B 83 144114Google Scholar

    [13]

    Magee C L 1970 Phase Transformations (Metals Park, Ohio: American Society for Metals

    [14]

    Wu L, Wang K, Xiao S, Deng H, Zhu W, Hu W 2016 Comput. Mater. Sci. 122 1Google Scholar

    [15]

    Huang Y, Xiong Y, Li P, Li X, Xiao S, Deng H, Zhu W, Hu W 2019 Int. J. Plast. 114 215Google Scholar

    [16]

    马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404Google Scholar

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404Google Scholar

    [17]

    张军, 陈文雄, 郑成武, 李殿中 2017 物理学报 66 070701Google Scholar

    Zhang J, Chen W X, Zheng C W, Li D Z 2017 Acta Phys. Sin. 66 070701Google Scholar

    [18]

    Zong H, Ding X, Lookman T, Sun J 2016 Acta Mater. 115 1Google Scholar

    [19]

    Gunkelmann N, Bringa E M, Kang K, Ackland G J, Ruestes C J, Urbassek H M 2012 Phys. Rev. B 86 144111Google Scholar

    [20]

    Gunkelmann N, Bringa E M, Urbassek H M 2015 J. Appl. Phys. 118 185902Google Scholar

    [21]

    Gunkelmann N, Tramontina D R, Bringa E M, Urbassek H M 2014 New J. Phys. 16 093032Google Scholar

    [22]

    Wang K, Xiao S, Deng H, Zhu W, Hu W 2014 Int. J. Plast. 59 180Google Scholar

    [23]

    Wang K, Chen J, Zhang X, Zhu W 2017 J. Appl. Phys. 122 105107Google Scholar

    [24]

    Wang K, Zhu W, Xiao S, Chen K, Deng H, Hu W 2015 Int. J. Plast. 71 218Google Scholar

    [25]

    Gunkelmann N, Bringa E M, Tramontina D R, Ruestes C J, Suggit M J, Higginbotham A, Wark J S, Urbassek H M 2014 Phys. Rev. B 89 140102Google Scholar

    [26]

    Zhang X, Wang K, Zhu W, Chen J, Cai M, Xiao S, Deng H, Hu W 2018 J. Appl. Phys. 123 045105Google Scholar

    [27]

    Zhang X, Chen J, Hu W, Zhu W, Xiao S, Deng H, Cai M 2019 J. Appl. Phys. 126 045901Google Scholar

    [28]

    Germann T C, Holian B L, Lomdahl P S, Ravelo R 2000 Phys. Rev. Lett. 84 5351Google Scholar

    [29]

    Zhakhovsky V V, Migdal K P, Inogamov N A, Anisimov S I 2015 19th Biennial American-Physical-Society (APS) Confe rence on Shock Compression of Condensed Matter (SEEM) Tampa, FL, USA, June 14–19, 2017 p070003

    [30]

    Zong H, He P, Ding X, Ackland G J 2020 Phys. Rev. B 101 144105Google Scholar

    [31]

    Zhang X, Deng Y, Chen J, Hu W 2021 Mater. Today Commun. 29 1028932Google Scholar

    [32]

    Plimpton S 1995 Comput. Mater. Sci. 4 361Google Scholar

    [33]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [34]

    Thompson A P, Plimpton S J, Mattson W 2009 J. Chem. Phys. 131 154107Google Scholar

    [35]

    Luo S N, An Q, Germann T C, Han L B 2009 J. Appl. Phys. 106 253Google Scholar

  • 图 1  模型示意图 (a) 包含sigma5晶界的模型1; (b) 包含sigma11晶界的模型2

    Fig. 1.  Model schematic figures: (a) Model 1 containing sigma5 grain boundaries; (b) model 2 containing sigma11 grain boundaries.

    图 2  冲击加载下含sigma5晶界的模型1在24 ps时刻的(a)微观结构图, 红色表示HCP结构的原子, 蓝色表示BCC结构的原子, 绿色表示FCC结构的原子, 白色代表无序原子, 晶界的位置可以通过观察白色原子的位置得到; (b)剪切应力分布图; (c) 温度分布图

    Fig. 2.  (a) Microstructure figures of the model 1 containing sigma5 grain boundaries under shock loading at 24 ps, where red represents HCP structure atoms, blue represents BCC structure atoms, green represents FCC structure atoms, and white represents disordered atoms, the position of the grain boundaries can be obtained by observing the position of white atoms. (b) The shear stress distribution; (c) the temperature distribution.

    图 3  冲击加载下含sigma11晶界的模型2在20 ps时刻的(a) 微观结构图, 颜色标示同图2(a); (b) 剪切应力分布图; (c) 温度分布图

    Fig. 3.  (a) Microstructure of the model 2 containing a sigma11 grain boundary under shock loading at 20 ps, and the color marking is the same as that of Figure 2(a); (b) the shear stress distribution of the model 2; (c) the temperature distribution of the model 2.

    图 4  BCC-HCP相变的示意图, 不同颜色的原子属于不同的层

    Fig. 4.  Schematic diagram of BCC-HCP phase transition, where atoms of different colors belong to different layers.

    图 5  模型2中sigma11晶界两侧发生相变后分别选取的一个HCP晶胞的原子形貌图 (a) 左侧; (b) 右侧

    Fig. 5.  Atomic morphology of an HCP cell selected after phase transition on both sides of grain boundary in model 2: (a) On the left; (b) on the right.

    图 6  展示了冲击过程中晶界两侧的晶格参数(lattice parameter)随时间的变化 (a) 对应晶界左侧; (b) 对应晶界右侧. 图中ab已经被归一化处理了

    Fig. 6.  Variation of lattice parameters on the (a) left and (b) right sides of grain boundaries over time during the shock process, where a and b have been scaled.

    图 7  活塞速度为0.5 km/s的加载下, 模型1在12 ps时内部原子的(a)位置偏差和(b)剪切应力随时间的变化

    Fig. 7.  Time dependent variation of (a) position deviation and (b) shear stress of atoms in model 1 under loading with a piston speed of 0.5 km/s at 12 ps.

    图 8  活塞速度为0.2 km/s的加载下, 模型2在17.5 ps时原子的(a)位置偏差和(b)剪切应力随时间的变化

    Fig. 8.  Time dependent variation of (a) position deviation and (b) shear stress of atoms in model 2 at 17.5 ps with a piston speed of 0.2 km/s.

  • [1]

    Bancroft D, Peterson E L, Minshall S 1956 J. Appl. Phys. 27 291Google Scholar

    [2]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar

    [3]

    Smith R F, Eggert J E, Bolme C A, Collins G W 2011 J. Appl. Phys. 110 123515Google Scholar

    [4]

    de Rességuier T, Hallouin M 1998 J. Appl. Phys. 84 1932Google Scholar

    [5]

    Levitas V I, Javanbakht M 2015 J. Mech. Phys. Solids 82 287Google Scholar

    [6]

    Javanbakht M, Levitas V I 2015 J. Mech. Phys. Solids 82 164Google Scholar

    [7]

    Talonen J, Hänninen H 2007 Acta Mater. 55 6108Google Scholar

    [8]

    Nagy E, Mertinger V, Tranta F, Sólyom J 2003 Mater. Sci. Eng. , A 378 308Google Scholar

    [9]

    Li N, Wang Y D, Liu W J, An Z N, Liu J P, Su R, Li J, Liaw P K 2014 Acta Mater. 64 12Google Scholar

    [10]

    Levitas V I, Ozsoy I B 2009 Int. J. Plast. 25 239Google Scholar

    [11]

    Zarechnyy O M, Levitas V I, Ma Y 2012 J. Appl. Phys. 111 023518Google Scholar

    [12]

    Hawreliak J A, Eldasher B, Lorenzana H, Kimminau G, Higginbotham A, Nagler B, Vinko S M, Murphy W J, Whitcher T, Wark J S 2011 Phys. Rev. B 83 144114Google Scholar

    [13]

    Magee C L 1970 Phase Transformations (Metals Park, Ohio: American Society for Metals

    [14]

    Wu L, Wang K, Xiao S, Deng H, Zhu W, Hu W 2016 Comput. Mater. Sci. 122 1Google Scholar

    [15]

    Huang Y, Xiong Y, Li P, Li X, Xiao S, Deng H, Zhu W, Hu W 2019 Int. J. Plast. 114 215Google Scholar

    [16]

    马文, 祝文军, 张亚林, 经福谦 2011 物理学报 60 066404Google Scholar

    Ma W, Zhu W J, Zhang Y L, Jing F Q 2011 Acta Phys. Sin. 60 066404Google Scholar

    [17]

    张军, 陈文雄, 郑成武, 李殿中 2017 物理学报 66 070701Google Scholar

    Zhang J, Chen W X, Zheng C W, Li D Z 2017 Acta Phys. Sin. 66 070701Google Scholar

    [18]

    Zong H, Ding X, Lookman T, Sun J 2016 Acta Mater. 115 1Google Scholar

    [19]

    Gunkelmann N, Bringa E M, Kang K, Ackland G J, Ruestes C J, Urbassek H M 2012 Phys. Rev. B 86 144111Google Scholar

    [20]

    Gunkelmann N, Bringa E M, Urbassek H M 2015 J. Appl. Phys. 118 185902Google Scholar

    [21]

    Gunkelmann N, Tramontina D R, Bringa E M, Urbassek H M 2014 New J. Phys. 16 093032Google Scholar

    [22]

    Wang K, Xiao S, Deng H, Zhu W, Hu W 2014 Int. J. Plast. 59 180Google Scholar

    [23]

    Wang K, Chen J, Zhang X, Zhu W 2017 J. Appl. Phys. 122 105107Google Scholar

    [24]

    Wang K, Zhu W, Xiao S, Chen K, Deng H, Hu W 2015 Int. J. Plast. 71 218Google Scholar

    [25]

    Gunkelmann N, Bringa E M, Tramontina D R, Ruestes C J, Suggit M J, Higginbotham A, Wark J S, Urbassek H M 2014 Phys. Rev. B 89 140102Google Scholar

    [26]

    Zhang X, Wang K, Zhu W, Chen J, Cai M, Xiao S, Deng H, Hu W 2018 J. Appl. Phys. 123 045105Google Scholar

    [27]

    Zhang X, Chen J, Hu W, Zhu W, Xiao S, Deng H, Cai M 2019 J. Appl. Phys. 126 045901Google Scholar

    [28]

    Germann T C, Holian B L, Lomdahl P S, Ravelo R 2000 Phys. Rev. Lett. 84 5351Google Scholar

    [29]

    Zhakhovsky V V, Migdal K P, Inogamov N A, Anisimov S I 2015 19th Biennial American-Physical-Society (APS) Confe rence on Shock Compression of Condensed Matter (SEEM) Tampa, FL, USA, June 14–19, 2017 p070003

    [30]

    Zong H, He P, Ding X, Ackland G J 2020 Phys. Rev. B 101 144105Google Scholar

    [31]

    Zhang X, Deng Y, Chen J, Hu W 2021 Mater. Today Commun. 29 1028932Google Scholar

    [32]

    Plimpton S 1995 Comput. Mater. Sci. 4 361Google Scholar

    [33]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [34]

    Thompson A P, Plimpton S J, Mattson W 2009 J. Chem. Phys. 131 154107Google Scholar

    [35]

    Luo S N, An Q, Germann T C, Han L B 2009 J. Appl. Phys. 106 253Google Scholar

  • [1] 刘妮, 张小芳, 梁九卿. 双光腔光机械系统的动力学相变和选择性能量交换. 物理学报, 2021, 70(14): 140301. doi: 10.7498/aps.70.20210178
    [2] 赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛. 热峰作用下单斜ZrO2相变过程的分子动力学模拟. 物理学报, 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [3] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟. 物理学报, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [4] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理. 物理学报, 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [5] 周良付, 张婧, 何文豪, 王栋, 苏雪, 杨冬燕, 李玉红. 氦泡在bcc钨中晶界处成核长大的分子动力学模拟. 物理学报, 2020, 69(4): 046103. doi: 10.7498/aps.69.20191069
    [6] 杨俊升, 黄多辉. 环状聚合物及其对应的线性链熔体在启动剪切场下流变特性的分子动力学模拟研究. 物理学报, 2019, 68(13): 138301. doi: 10.7498/aps.68.20190403
    [7] 种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平. 窗口声阻抗对锆相变动力学的影响. 物理学报, 2018, 67(7): 070204. doi: 10.7498/aps.67.20172198
    [8] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [9] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟. 物理学报, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
    [10] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [11] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [12] 马文, 祝文军, 陈开果, 经福谦. 晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究. 物理学报, 2011, 60(1): 016107. doi: 10.7498/aps.60.016107
    [13] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [14] 龚博致, 张秉坚. 水中自然超空泡机理及减阻效应的非平衡分子动力学研究. 物理学报, 2009, 58(3): 1504-1509. doi: 10.7498/aps.58.1504
    [15] 陈贤淼, 宋申华. 高温塑性变形引起的P非平衡晶界偏聚. 物理学报, 2009, 58(13): 183-S188. doi: 10.7498/aps.58.183
    [16] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [17] 胡建刚, 王震遐, 勇震中, 李勤涛, 朱志远. 40Ar+诱导无定形碳到金刚石纳米晶相变的研究. 物理学报, 2006, 55(12): 6538-6542. doi: 10.7498/aps.55.6538
    [18] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [19] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
    [20] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
计量
  • 文章访问数:  1927
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-02
  • 修回日期:  2023-09-28
  • 上网日期:  2023-11-09
  • 刊出日期:  2024-02-05

/

返回文章
返回