搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环状聚合物及其对应的线性链熔体在启动剪切场下流变特性的分子动力学模拟研究

杨俊升 黄多辉

引用本文:
Citation:

环状聚合物及其对应的线性链熔体在启动剪切场下流变特性的分子动力学模拟研究

杨俊升, 黄多辉

Rheological properties of ring and linear polymers under start-up shear by molecular dynamics simulations

Yang Jun-Sheng, Huang Duo-Hui
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用非平衡分子动力学方法研究了环状聚合物及其对应的线性链熔体在启动剪切场下的结构与流变特性. 模拟结果显示: 低剪切速率下($\dot \gamma < 1 \times {10^{ - 4}}{\tau ^{ - 1}}$)环状链分子体系相比于同分子量的线性链体系并没有出现明显的过冲现象. 该结果表明, 在启动剪切场下环状分子与其对应的线性链相比较表现出了更弱的分子形变, 同时模拟结果也与最近实验观察的结果一致. 为了进一步探究这种现象背后的分子机理, 在分子层面统计了不同流场强度下, 链段的长度和取向角分布随着应变的演化, 统计结果证明了环状聚合物分子链段弱的形变是导致其弱的剪切变稀和峰值应变的主要因素. 本文还给出了过冲点和稳态在不同剪切速率下环状分子与其对应的线性链的流变特性(过冲应变、最大应力、最大黏性和稳态黏性)、结构和取向参数与维森伯格数(WiR)所满足的标度关系.
    We analyze the structure and rheological properties of ring and linear polymers under shear byusing the non-equilibrium molecular dynamics simulation. The simulation results show that compared with the ring chains, the linear polymers do not present prominent stress over shoot phenomenon. Since the overshoot reflects the maximum flow-induced deformation of the polymer, this qualitative observation already implies that the ring experience less deformation than its linear precursor in simple shear flow. This is consistent with the recent experimental result. In order to further study the molecular mechanism of this phenomenon, the segmental structure and orientation angle distribution as a function of strain under the different Weissenberg numbers are given in this study. The weak overshoot of the stretching of the ring polymers proves that the weak shear thinning and peak strain are due to the weak deformation of the segment chain of the ring in the shear flow. The rheological properties of linear and ring system are extracted from the stress-strain curves, can be used further to analyze the data. The peak strain γmax as afunction of WiR follows a power-law with an exponent of 0.3 for linear polymer at WiR>1, however, for the ring system thepeak strain follows a power-law with an exponent of 0.1. The parameter ηmax/ηsteady is also the measure of the effective chain deformation at a steady state. The data show its progressive increase with WiR increasing, and follows a power-law with a scaling slop of 0.13 and 0.08 for linear and ring polymers, respectively. The peak stress σmax as a function of WiR is also extracted from stress-strain curve. The two investigated systems both obey the scaling law with an exponent of 0.5. The normalized steady-state shear viscosity obeys a shear thinning slop of –0.86 for the linear polymer, the ring polymer obeysa shear thinning slop of –0.4. According to the gyration tensor and orientation angle, the power-law relationship between stretching and orientation is also given in this work.
      通信作者: 杨俊升, yangjunsheng2005@163.com
    • 基金项目: 四川省教育厅科研基金(批准号: 15ZB293)和宜宾学院计算物理四川省高等学校重点实验室开放课题基金 (批准号: JSWL2014KFZ02)资助的课题.
      Corresponding author: Yang Jun-Sheng, yangjunsheng2005@163.com
    • Funds: Project supported by the Scientific Research Fund of Sichuan Provincial Education Department, China (Grant No. 15ZB293) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (JSWL2014KF02).
    [1]

    Li Y, Hsiao K W, Brockman C A, Yates D Y, Robertson-Anderson R M, Kornfield J A, San Francisco M J, Schroeder C M, McKenna G B 2015 Macromolecules 48 5997Google Scholar

    [2]

    Sanchez T, Kulic I M, Dogic Z 2010 Phys. Rev. Lett. 104 098103Google Scholar

    [3]

    Micheletti C, Orlandini E 2012 Macromolecules 45 2113Google Scholar

    [4]

    Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M 2008 Nature Mater. 7 997Google Scholar

    [5]

    Klein J 1986 Macromolecules 19 105Google Scholar

    [6]

    Halverson J D, Grest G S, Grosberg A Y, Kremer K 2012 Phys. Rev. Lett. 108 038301Google Scholar

    [7]

    Hernández Cifre J G, Pamies R, López Martínez M C, García de la Torre J 2005 Polymer 46 267Google Scholar

    [8]

    Yan Z C, Costanzo S, Jeong Y, Chang T, Vlassopoulos D 2016 Macromolecules 49 1444Google Scholar

    [9]

    Chen W, Zhang K, Liu L, Chen J, Li Y, An L 2017 Macromolecules 50 1236Google Scholar

    [10]

    Chen W, Zhao H, Liu L, Chen J, Li Y, An L 2015 Soft Matter 11 5265Google Scholar

    [11]

    Rubinstein M 1986 Phy. Rev. Lett. 57 3023Google Scholar

    [12]

    Nechaev S K, Semenov A N, Koleva M K 1987 Physica A: Statist. Mech. Appl. 140 506Google Scholar

    [13]

    Chen W, Li Y, Zhao H, Liu L, Chen J, An L 2015 Polymer 64 93Google Scholar

    [14]

    Cao J, Likhtman A E 2015 ACS Macro. Lett. 4 1376Google Scholar

    [15]

    Luo C, Kröger M, Sommer J U 2017 Polymer 109 71Google Scholar

    [16]

    Kremer K, Grest G S 1990 J. Chem. Phys. 92 5057Google Scholar

    [17]

    Wang Z, Likhtman A E, Larson R G 2012 Macromolecules 45 3557Google Scholar

    [18]

    McLeish T C B 2002 Adv. Phys. 51 1379Google Scholar

    [19]

    Cao J, Likhtman A E 2012 Phy. Rev. Lett. 108 028302Google Scholar

    [20]

    DoiY, Matsubara K, Ohta Y, Nakano T, Kawaguchi D, Takahashi Y, Takano A, Matsushita Y 2015 Macromolecules 48 3140Google Scholar

    [21]

    Boukany P E, Wang S Q, Wang X 2009 J. Rheol. 53 617Google Scholar

    [22]

    Jeong S, Kim J M, Baig C 2017 Macromolecules 50 3424Google Scholar

  • 图 1  线性链与其对应的环状链对应的结构

    Fig. 1.  The structure of linear and ring chains.

    图 2  (a), (b)线性链体系对应的应力随着应变及剪切黏性随着时间的演化过程;(c), (d)环状链体系对应的应力随着应变及剪切黏性随着时间的演化过程

    Fig. 2.  (a), (b) Stress-strain and nonlinear startup shear viscosity as function of strain and time for linear polymers, respectively; (c), (d) stress-strain and nonlinear startup shear viscosity as function of strain and time for ring polymers, respectively.

    图 3  不同流场强度下线性链及其环状链的归一化稳态黏性${\eta _{{\rm{steady}}}}/{\eta _0}$ (a), 最大黏性和稳态黏性比值${\eta _{\max }}/{\eta _{{\rm{steady}}}}$ (b), 峰应变${\gamma _{\max }}$ (c) 和最大应力${\sigma _{\max }}$ (d)随着$W{i_{\rm{R}}}$的变化

    Fig. 3.  (a) Evolution of steady viscosity normalized with the zero-shear viscosity${\eta _{{\rm{steady}}}}/{\eta _0}$, (b) maximum viscosity scaled with steady viscosity${\eta _{\max }}/{\eta _{{\rm{steady}}}}$, (c) peak strains ${\gamma _{\max }}$ and (d) peak shear stress ${\sigma _{\max }}$ as a function of $W{i_{\rm{R}}}$.

    图 4  (a)线性链和环状链体系的$\langle R_{\rm{g}}^2 \rangle/\langle {R_{{\rm{g}}0}^2}\rangle $随着$W{i_{\rm{R}}}$的变化;(b)线性链和环状链熔体的取向$\left\langle {\tan 2\theta } \right\rangle $随着$W{i_{\rm{R}}}$的变化

    Fig. 4.  The $\langle {R_{\rm{g}}^2}\rangle/\langle {R_{{\rm{g}}0}^2}\rangle $ (a) and $\left\langle {\tan 2\theta } \right\rangle $ (b) as a function of $W{i_{\rm{R}}}$ for linear and ring polymers.

    图 5  不同$W{i_{\rm{R}}}$下线性与环状分子链段长度分布随着应变的演化

    Fig. 5.  Evolution of segmental length distribution of linear and ring polymers under the different $W{i_{\rm{R}}}$.

    图 6  不同$W{i_{\rm{R}}}$下线性与环状分子链段沿着剪切方向角分布随着应变的演化

    Fig. 6.  Evolution of segmental angle distribution for linear and ring polymers under the different $W{i_{\rm{R}}}$.

  • [1]

    Li Y, Hsiao K W, Brockman C A, Yates D Y, Robertson-Anderson R M, Kornfield J A, San Francisco M J, Schroeder C M, McKenna G B 2015 Macromolecules 48 5997Google Scholar

    [2]

    Sanchez T, Kulic I M, Dogic Z 2010 Phys. Rev. Lett. 104 098103Google Scholar

    [3]

    Micheletti C, Orlandini E 2012 Macromolecules 45 2113Google Scholar

    [4]

    Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M 2008 Nature Mater. 7 997Google Scholar

    [5]

    Klein J 1986 Macromolecules 19 105Google Scholar

    [6]

    Halverson J D, Grest G S, Grosberg A Y, Kremer K 2012 Phys. Rev. Lett. 108 038301Google Scholar

    [7]

    Hernández Cifre J G, Pamies R, López Martínez M C, García de la Torre J 2005 Polymer 46 267Google Scholar

    [8]

    Yan Z C, Costanzo S, Jeong Y, Chang T, Vlassopoulos D 2016 Macromolecules 49 1444Google Scholar

    [9]

    Chen W, Zhang K, Liu L, Chen J, Li Y, An L 2017 Macromolecules 50 1236Google Scholar

    [10]

    Chen W, Zhao H, Liu L, Chen J, Li Y, An L 2015 Soft Matter 11 5265Google Scholar

    [11]

    Rubinstein M 1986 Phy. Rev. Lett. 57 3023Google Scholar

    [12]

    Nechaev S K, Semenov A N, Koleva M K 1987 Physica A: Statist. Mech. Appl. 140 506Google Scholar

    [13]

    Chen W, Li Y, Zhao H, Liu L, Chen J, An L 2015 Polymer 64 93Google Scholar

    [14]

    Cao J, Likhtman A E 2015 ACS Macro. Lett. 4 1376Google Scholar

    [15]

    Luo C, Kröger M, Sommer J U 2017 Polymer 109 71Google Scholar

    [16]

    Kremer K, Grest G S 1990 J. Chem. Phys. 92 5057Google Scholar

    [17]

    Wang Z, Likhtman A E, Larson R G 2012 Macromolecules 45 3557Google Scholar

    [18]

    McLeish T C B 2002 Adv. Phys. 51 1379Google Scholar

    [19]

    Cao J, Likhtman A E 2012 Phy. Rev. Lett. 108 028302Google Scholar

    [20]

    DoiY, Matsubara K, Ohta Y, Nakano T, Kawaguchi D, Takahashi Y, Takano A, Matsushita Y 2015 Macromolecules 48 3140Google Scholar

    [21]

    Boukany P E, Wang S Q, Wang X 2009 J. Rheol. 53 617Google Scholar

    [22]

    Jeong S, Kim J M, Baig C 2017 Macromolecules 50 3424Google Scholar

  • [1] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响. 物理学报, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] 章其林, 王瑞丰, 周同, 王允杰, 刘琪. 一维有序单链水红外吸收光谱的分子动力学模拟. 物理学报, 2023, 72(8): 084207. doi: 10.7498/aps.72.20222031
    [3] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [4] 符晓倩, 吕思远, 王鹿霞. 双分子链中非线性多激子态的动力学研究. 物理学报, 2020, 69(19): 197301. doi: 10.7498/aps.69.20200104
    [5] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟. 物理学报, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [6] 杨俊升, 朱子亮, 曹启龙. 预取向半晶态高分子片晶结构形成微观机理及其应力-应变响应特性的分子动力学模拟. 物理学报, 2020, 69(3): 038101. doi: 10.7498/aps.69.20191191
    [7] 陆越, 马建兵, 滕翠娟, 陆颖, 李明, 徐春华. 单分子动力学研究大肠杆菌单链结合蛋白与单链DNA的结合过程. 物理学报, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [8] 徐树杰, 师春生, 赵乃勤, 刘恩佐. 热加工过程中动态再结晶现象的多相场研究. 物理学报, 2012, 61(11): 116101. doi: 10.7498/aps.61.116101
    [9] 陶为俊, 浣石. 沿时间逐步求解应力的拉格朗日分析方法研究. 物理学报, 2012, 61(20): 200703. doi: 10.7498/aps.61.200703
    [10] 王平建, 夏继宏, 刘长松, 刘会, 闫龙. 一维复合颗粒链中能量衰减的动力学分析. 物理学报, 2011, 60(1): 014501. doi: 10.7498/aps.60.014501
    [11] 刘文, 刘德胜, 李海宏. 二维链间扩展的极化子动力学研究. 物理学报, 2010, 59(9): 6405-6411. doi: 10.7498/aps.59.6405
    [12] 龚博致, 张秉坚. 水中自然超空泡机理及减阻效应的非平衡分子动力学研究. 物理学报, 2009, 58(3): 1504-1509. doi: 10.7498/aps.58.1504
    [13] 王 禹, 章林溪. 外力诱导吸附高分子单链的拉伸分子动力学研究. 物理学报, 2008, 57(5): 3281-3286. doi: 10.7498/aps.57.3281
    [14] 张晋鲁, 蒋建国, 蒋新革, 黄以能. 线性高分子体系中高分子链间排除体积效应的模型化. 物理学报, 2007, 56(9): 5088-5092. doi: 10.7498/aps.56.5088
    [15] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [16] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型. 物理学报, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [17] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [18] 冯培成, 王登龙. 计及次近邻非谐相互作用下原子链中的非线性元激发. 物理学报, 2003, 52(6): 1332-1336. doi: 10.7498/aps.52.1332
    [19] 吴长勤, 张国平, 裘慧明. 高分子链中的光学非线性基本态. 物理学报, 1995, 44(1): 64-71. doi: 10.7498/aps.44.64
    [20] 余超凡, 周义昌. 带有次近邻相互作用的非谐性线性链中亚声速和超声速孤子. 物理学报, 1994, 43(10): 1677-1687. doi: 10.7498/aps.43.1677
计量
  • 文章访问数:  8162
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-21
  • 修回日期:  2019-04-17
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回