-
NiTi形状记忆合金的高应变动态响应特性在军事、航空等领域具有重要应用.为研究NiTi合金在动态力学诱导下的相变行为,在不同温区不同冲击速率下, 通过轻气炮装置对NiTi合金进行了动态加载实验.利用差示扫描量热仪(DSC),综合物性测量系统分析了冲击波残余效应对NiTi合金相变行为的影响.研究发现:受冲击的样品在第一次DSC热循环中观察到了三个马氏体吸热峰,表现为三步逆马氏体相变,而在第二次热循环中其中两个应力诱发马氏体吸热峰因变形恢复消失. 形成两个应力诱发马氏体吸热峰的原因可能是晶粒内部与晶界处的相变过程不同步. 受冲击后样品DSC放热峰上出现了一小肩峰,表明可能因中间相(R相)的出现而发生了两步相变,结合电阻测量曲线进一步确认R相的存在,且发现奥氏体相向R相转变以及R相向马氏体相转变这两种相变过程在某一温度范围内可同时进行.同时,文中也具体讨论了不同的冲击加载条件对相变过程的影响.
-
关键词:
- NiTi形状记忆合金 /
- 动态冲击 /
- DSC /
- 相变
The high-strain dynamic behavior of NiTi shape memory alloy has significant applications in several fields such as military af- fairs, aerospace. In order to investigate the transformation behavior in NiTi alloy, induced by dynamic mechanics, the shock-loading experiments are performed using a single stage gas gun at different temperatures and different shock velocities. Differential scanning calorimeter (DSC) and comprehensive physical property measurement system are employed to analyze the phase transformation in- duced by residual effects of shock waves in NiTi alloy. Three endotherms are observed in the first heating cycle, showing the presence of three-step reverse phase transformation; whereas during the second heating only one endotherm is seen, because the other two en- dotherms attributed to stress-induced martensite have disappeared. The exothermic and endothermic peak, owing to the transformation of shock-treated specimens, become small and their transformation temperature regions are broadened. This tendency indicates that the internal defects in the specimens, introduced by shock-treated, increase the resistance of phase transformation. The exothermic peaks of specimens, shock-treated at low velocity and high velocity, all shift to the low-temperature-zone, because the dislocations increase the hindrance to martensitic transformation. However, the endothermic peaks of specimens with low velocity shock-treated shift to high-temperature-zone, illustrating that the reverse martensitic transformation is also opposed by dislocations; while the endothermic peaks shift to low-temperature-zone for high velocity shock-treated, due to the decrease of transformation energy, caused by the re-duction of recoverable martensite. A small shoulder is detected in exothermic peak, whose shape becomes sharper with shock rate increasing. This result reveals that the intermediate phase (R-phase) results in two-stage phase transformation. The electrical resistivity measurement result further confirms that the two types of phase transformations associated with austenite to rhombohedral (A→R) and rhombohedral to martensite (R→M) can occur at the same time in a certain temperature range.-
Keywords:
- NiTi shape memory alloy /
- dynamic shock /
- DSC /
- phase transformation
[1] Elahinia M H, Hashemi M, Tabesh M, Bhaduri S B 2012 Prog. Mater. Sci. 57 911
[2] Es-Souni M, Es-Souni M, Fischer-Brandies H 2005 Anal. Bioanal. Chem. 381 557
[3] Li Q, Zeng Y J, Tang X Y 2010 Australas. Phys. Eng. Sci. Med. 33 129
[4] Carroll M C, Somsen Ch, Eggeler G 2004 Scripta Mater. 50 187
[5] Millett J C F, Bourne N K, GrayIII G T 2002 J. Appl. Phys. 92 3107
[6] Matsumoto H, Kondo K, Dohi S, Sawaoka A 1987 J. Mater. Sci. 22 581
[7] Xu X, Thadhani N 2001 Scripta Mater. 44 2477
[8] Xu X, Thadhani N 2004 Mater. Sci. Eng. A 384 194
[9] Li T C, Qui Y B, Liu J T, Wang F T, Zhu M, Yang D Z 1992 J. Mater. Sci. Lett. 11 845
[10] Han X, Zou W, Way R, Jin S, Zhang Z, Li T, Yang D 1997 J. Mater. Sci. Lett. 32 4723
[11] Millett J C F, Bourne N K 2004 Mater. Sci. Eng. A 378 138
[12] Meziere Y J E, Millett J C F 2006 J. Appl. Phys. 100 033513
[13] Thakur A M, Thadhani N N, Schwarz R B 1997 Metall. Mater. Trans. A 28 1445
[14] Escobar J C, Clifton R J, Yang S Y 2000 Shock Compression of Condensed Matter-1999 Woodbury, NY, American 1999 p267
[15] Matsumoto H, Kondo K, Sawaoka A 1989 J. Jpn. Inst. Met. 53 134
[16] Kuruta T, Matsumoto H, Abe H 2004 J. Alloys Compd. 381 158
[17] Kuruta T, Matsumoto H, Sakamoto K, Abe H 2005 J. Alloys Compd. 400 92
[18] Su P C, Wu S K 2004 Acta Mater. 52 1117
[19] He X M, Rong L J 2004 Scripta Mater. 51 7
[20] Liu H C, Wu S K, Chou T S 1991 Acta Metall. Mater. 39 2069
[21] Uchil J, Mahesh K K, Ganesh Kumara K 2002 Physica B 324 419
[22] Huang C M, Meichle M, Salamon M B, Wayman C M 1983 Phil. Mag. A 47 9
[23] Olbricht J, Yawny A, Pelegrina J L, Dlouhy A, Eggeler G 2011 Metall. Mater. Trans. A 42A 2556
[24] Otsuka K, Ren X 2005 Prog. Mater. Sci. 50 511
[25] Yong M L, Wagner M F X, Frenzel J, Schmahl W W, Eggeler G 2010 Acta Mater. 58 2344
[26] Khelfaoui F, Guénin G 2003 Mater. Sci. Eng. A 355 292
[27] Michutta J, Carroll M C, Yawny A, Somsen Ch, Neuking K, Eggeler G 2004 Mater. Sci. Eng. A 378 152
[28] Chang S H, Wu S K, Chang G H 2005 Scripta Mater. 52 1341
[29] Shang S, Hokamoto K, Meyers M A 1992 J Mater. Sci. 27 5470
-
[1] Elahinia M H, Hashemi M, Tabesh M, Bhaduri S B 2012 Prog. Mater. Sci. 57 911
[2] Es-Souni M, Es-Souni M, Fischer-Brandies H 2005 Anal. Bioanal. Chem. 381 557
[3] Li Q, Zeng Y J, Tang X Y 2010 Australas. Phys. Eng. Sci. Med. 33 129
[4] Carroll M C, Somsen Ch, Eggeler G 2004 Scripta Mater. 50 187
[5] Millett J C F, Bourne N K, GrayIII G T 2002 J. Appl. Phys. 92 3107
[6] Matsumoto H, Kondo K, Dohi S, Sawaoka A 1987 J. Mater. Sci. 22 581
[7] Xu X, Thadhani N 2001 Scripta Mater. 44 2477
[8] Xu X, Thadhani N 2004 Mater. Sci. Eng. A 384 194
[9] Li T C, Qui Y B, Liu J T, Wang F T, Zhu M, Yang D Z 1992 J. Mater. Sci. Lett. 11 845
[10] Han X, Zou W, Way R, Jin S, Zhang Z, Li T, Yang D 1997 J. Mater. Sci. Lett. 32 4723
[11] Millett J C F, Bourne N K 2004 Mater. Sci. Eng. A 378 138
[12] Meziere Y J E, Millett J C F 2006 J. Appl. Phys. 100 033513
[13] Thakur A M, Thadhani N N, Schwarz R B 1997 Metall. Mater. Trans. A 28 1445
[14] Escobar J C, Clifton R J, Yang S Y 2000 Shock Compression of Condensed Matter-1999 Woodbury, NY, American 1999 p267
[15] Matsumoto H, Kondo K, Sawaoka A 1989 J. Jpn. Inst. Met. 53 134
[16] Kuruta T, Matsumoto H, Abe H 2004 J. Alloys Compd. 381 158
[17] Kuruta T, Matsumoto H, Sakamoto K, Abe H 2005 J. Alloys Compd. 400 92
[18] Su P C, Wu S K 2004 Acta Mater. 52 1117
[19] He X M, Rong L J 2004 Scripta Mater. 51 7
[20] Liu H C, Wu S K, Chou T S 1991 Acta Metall. Mater. 39 2069
[21] Uchil J, Mahesh K K, Ganesh Kumara K 2002 Physica B 324 419
[22] Huang C M, Meichle M, Salamon M B, Wayman C M 1983 Phil. Mag. A 47 9
[23] Olbricht J, Yawny A, Pelegrina J L, Dlouhy A, Eggeler G 2011 Metall. Mater. Trans. A 42A 2556
[24] Otsuka K, Ren X 2005 Prog. Mater. Sci. 50 511
[25] Yong M L, Wagner M F X, Frenzel J, Schmahl W W, Eggeler G 2010 Acta Mater. 58 2344
[26] Khelfaoui F, Guénin G 2003 Mater. Sci. Eng. A 355 292
[27] Michutta J, Carroll M C, Yawny A, Somsen Ch, Neuking K, Eggeler G 2004 Mater. Sci. Eng. A 378 152
[28] Chang S H, Wu S K, Chang G H 2005 Scripta Mater. 52 1341
[29] Shang S, Hokamoto K, Meyers M A 1992 J Mater. Sci. 27 5470
计量
- 文章访问数: 6538
- PDF下载量: 686
- 被引次数: 0