搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击诱发NiTi形状记忆合金相变行为研究

刘洪涛 孙光爱 王沿东 陈波 汪小琳

引用本文:
Citation:

冲击诱发NiTi形状记忆合金相变行为研究

刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳

Shock-induced transformation behavior in NiTi shape memory alloy

Liu Hong-Tao, Sun Guang-Ai, Wang Yan-Dong, Chen Bo, Wang Xiao-Lin
PDF
导出引用
  • NiTi形状记忆合金的高应变动态响应特性在军事、航空等领域具有重要应用.为研究NiTi合金在动态力学诱导下的相变行为,在不同温区不同冲击速率下, 通过轻气炮装置对NiTi合金进行了动态加载实验.利用差示扫描量热仪(DSC),综合物性测量系统分析了冲击波残余效应对NiTi合金相变行为的影响.研究发现:受冲击的样品在第一次DSC热循环中观察到了三个马氏体吸热峰,表现为三步逆马氏体相变,而在第二次热循环中其中两个应力诱发马氏体吸热峰因变形恢复消失. 形成两个应力诱发马氏体吸热峰的原因可能是晶粒内部与晶界处的相变过程不同步. 受冲击后样品DSC放热峰上出现了一小肩峰,表明可能因中间相(R相)的出现而发生了两步相变,结合电阻测量曲线进一步确认R相的存在,且发现奥氏体相向R相转变以及R相向马氏体相转变这两种相变过程在某一温度范围内可同时进行.同时,文中也具体讨论了不同的冲击加载条件对相变过程的影响.
    The high-strain dynamic behavior of NiTi shape memory alloy has significant applications in several fields such as military af- fairs, aerospace. In order to investigate the transformation behavior in NiTi alloy, induced by dynamic mechanics, the shock-loading experiments are performed using a single stage gas gun at different temperatures and different shock velocities. Differential scanning calorimeter (DSC) and comprehensive physical property measurement system are employed to analyze the phase transformation in- duced by residual effects of shock waves in NiTi alloy. Three endotherms are observed in the first heating cycle, showing the presence of three-step reverse phase transformation; whereas during the second heating only one endotherm is seen, because the other two en- dotherms attributed to stress-induced martensite have disappeared. The exothermic and endothermic peak, owing to the transformation of shock-treated specimens, become small and their transformation temperature regions are broadened. This tendency indicates that the internal defects in the specimens, introduced by shock-treated, increase the resistance of phase transformation. The exothermic peaks of specimens, shock-treated at low velocity and high velocity, all shift to the low-temperature-zone, because the dislocations increase the hindrance to martensitic transformation. However, the endothermic peaks of specimens with low velocity shock-treated shift to high-temperature-zone, illustrating that the reverse martensitic transformation is also opposed by dislocations; while the endothermic peaks shift to low-temperature-zone for high velocity shock-treated, due to the decrease of transformation energy, caused by the re-duction of recoverable martensite. A small shoulder is detected in exothermic peak, whose shape becomes sharper with shock rate increasing. This result reveals that the intermediate phase (R-phase) results in two-stage phase transformation. The electrical resistivity measurement result further confirms that the two types of phase transformations associated with austenite to rhombohedral (A→R) and rhombohedral to martensite (R→M) can occur at the same time in a certain temperature range.
    • 基金项目: 国家自然科学基金(批准号: 91126001, 11105128, 51001024)、中国工程物理研究院科学技术发展基金(批准号: 2010A0103002)和中国工程物理研究院核物理与化学研究所科学技术创新基金(批准号: 2009CX01)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91126001, 11105128, 51001024), the Science and Technology Foundation of Chinese Academy of Engineering Physics (Grant No. 2010A0103002), and the Science and Technology Innovation Fund of Institute of Nuclear Physics and Chemistry of Chinese Academy of Engineering Physics (Grant No. 2009CX01).
    [1]

    Elahinia M H, Hashemi M, Tabesh M, Bhaduri S B 2012 Prog. Mater. Sci. 57 911

    [2]

    Es-Souni M, Es-Souni M, Fischer-Brandies H 2005 Anal. Bioanal. Chem. 381 557

    [3]

    Li Q, Zeng Y J, Tang X Y 2010 Australas. Phys. Eng. Sci. Med. 33 129

    [4]

    Carroll M C, Somsen Ch, Eggeler G 2004 Scripta Mater. 50 187

    [5]

    Millett J C F, Bourne N K, GrayIII G T 2002 J. Appl. Phys. 92 3107

    [6]

    Matsumoto H, Kondo K, Dohi S, Sawaoka A 1987 J. Mater. Sci. 22 581

    [7]

    Xu X, Thadhani N 2001 Scripta Mater. 44 2477

    [8]

    Xu X, Thadhani N 2004 Mater. Sci. Eng. A 384 194

    [9]

    Li T C, Qui Y B, Liu J T, Wang F T, Zhu M, Yang D Z 1992 J. Mater. Sci. Lett. 11 845

    [10]

    Han X, Zou W, Way R, Jin S, Zhang Z, Li T, Yang D 1997 J. Mater. Sci. Lett. 32 4723

    [11]

    Millett J C F, Bourne N K 2004 Mater. Sci. Eng. A 378 138

    [12]

    Meziere Y J E, Millett J C F 2006 J. Appl. Phys. 100 033513

    [13]

    Thakur A M, Thadhani N N, Schwarz R B 1997 Metall. Mater. Trans. A 28 1445

    [14]

    Escobar J C, Clifton R J, Yang S Y 2000 Shock Compression of Condensed Matter-1999 Woodbury, NY, American 1999 p267

    [15]

    Matsumoto H, Kondo K, Sawaoka A 1989 J. Jpn. Inst. Met. 53 134

    [16]

    Kuruta T, Matsumoto H, Abe H 2004 J. Alloys Compd. 381 158

    [17]

    Kuruta T, Matsumoto H, Sakamoto K, Abe H 2005 J. Alloys Compd. 400 92

    [18]

    Su P C, Wu S K 2004 Acta Mater. 52 1117

    [19]

    He X M, Rong L J 2004 Scripta Mater. 51 7

    [20]

    Liu H C, Wu S K, Chou T S 1991 Acta Metall. Mater. 39 2069

    [21]

    Uchil J, Mahesh K K, Ganesh Kumara K 2002 Physica B 324 419

    [22]

    Huang C M, Meichle M, Salamon M B, Wayman C M 1983 Phil. Mag. A 47 9

    [23]

    Olbricht J, Yawny A, Pelegrina J L, Dlouhy A, Eggeler G 2011 Metall. Mater. Trans. A 42A 2556

    [24]

    Otsuka K, Ren X 2005 Prog. Mater. Sci. 50 511

    [25]

    Yong M L, Wagner M F X, Frenzel J, Schmahl W W, Eggeler G 2010 Acta Mater. 58 2344

    [26]

    Khelfaoui F, Guénin G 2003 Mater. Sci. Eng. A 355 292

    [27]

    Michutta J, Carroll M C, Yawny A, Somsen Ch, Neuking K, Eggeler G 2004 Mater. Sci. Eng. A 378 152

    [28]

    Chang S H, Wu S K, Chang G H 2005 Scripta Mater. 52 1341

    [29]

    Shang S, Hokamoto K, Meyers M A 1992 J Mater. Sci. 27 5470

  • [1]

    Elahinia M H, Hashemi M, Tabesh M, Bhaduri S B 2012 Prog. Mater. Sci. 57 911

    [2]

    Es-Souni M, Es-Souni M, Fischer-Brandies H 2005 Anal. Bioanal. Chem. 381 557

    [3]

    Li Q, Zeng Y J, Tang X Y 2010 Australas. Phys. Eng. Sci. Med. 33 129

    [4]

    Carroll M C, Somsen Ch, Eggeler G 2004 Scripta Mater. 50 187

    [5]

    Millett J C F, Bourne N K, GrayIII G T 2002 J. Appl. Phys. 92 3107

    [6]

    Matsumoto H, Kondo K, Dohi S, Sawaoka A 1987 J. Mater. Sci. 22 581

    [7]

    Xu X, Thadhani N 2001 Scripta Mater. 44 2477

    [8]

    Xu X, Thadhani N 2004 Mater. Sci. Eng. A 384 194

    [9]

    Li T C, Qui Y B, Liu J T, Wang F T, Zhu M, Yang D Z 1992 J. Mater. Sci. Lett. 11 845

    [10]

    Han X, Zou W, Way R, Jin S, Zhang Z, Li T, Yang D 1997 J. Mater. Sci. Lett. 32 4723

    [11]

    Millett J C F, Bourne N K 2004 Mater. Sci. Eng. A 378 138

    [12]

    Meziere Y J E, Millett J C F 2006 J. Appl. Phys. 100 033513

    [13]

    Thakur A M, Thadhani N N, Schwarz R B 1997 Metall. Mater. Trans. A 28 1445

    [14]

    Escobar J C, Clifton R J, Yang S Y 2000 Shock Compression of Condensed Matter-1999 Woodbury, NY, American 1999 p267

    [15]

    Matsumoto H, Kondo K, Sawaoka A 1989 J. Jpn. Inst. Met. 53 134

    [16]

    Kuruta T, Matsumoto H, Abe H 2004 J. Alloys Compd. 381 158

    [17]

    Kuruta T, Matsumoto H, Sakamoto K, Abe H 2005 J. Alloys Compd. 400 92

    [18]

    Su P C, Wu S K 2004 Acta Mater. 52 1117

    [19]

    He X M, Rong L J 2004 Scripta Mater. 51 7

    [20]

    Liu H C, Wu S K, Chou T S 1991 Acta Metall. Mater. 39 2069

    [21]

    Uchil J, Mahesh K K, Ganesh Kumara K 2002 Physica B 324 419

    [22]

    Huang C M, Meichle M, Salamon M B, Wayman C M 1983 Phil. Mag. A 47 9

    [23]

    Olbricht J, Yawny A, Pelegrina J L, Dlouhy A, Eggeler G 2011 Metall. Mater. Trans. A 42A 2556

    [24]

    Otsuka K, Ren X 2005 Prog. Mater. Sci. 50 511

    [25]

    Yong M L, Wagner M F X, Frenzel J, Schmahl W W, Eggeler G 2010 Acta Mater. 58 2344

    [26]

    Khelfaoui F, Guénin G 2003 Mater. Sci. Eng. A 355 292

    [27]

    Michutta J, Carroll M C, Yawny A, Somsen Ch, Neuking K, Eggeler G 2004 Mater. Sci. Eng. A 378 152

    [28]

    Chang S H, Wu S K, Chang G H 2005 Scripta Mater. 52 1341

    [29]

    Shang S, Hokamoto K, Meyers M A 1992 J Mater. Sci. 27 5470

  • [1] 王路生, 罗龙, 刘浩, 杨鑫, 丁军, 宋鹍, 路世青, 黄霞. 冲击速度对单晶镍层裂行为的影响规律及作用机制. 物理学报, 2024, 73(16): 164601. doi: 10.7498/aps.73.20240244
    [2] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响. 物理学报, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [3] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [4] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [5] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [6] 任国武, 张世文, 范诚, 陈永涛. 预应力对多晶铁冲击行为影响的微观模拟研究. 物理学报, 2016, 65(19): 196203. doi: 10.7498/aps.65.196203
    [7] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. NiTi形状记忆合金形变机制的应变率相关性研究. 物理学报, 2013, 62(18): 186201. doi: 10.7498/aps.62.186201
    [8] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理. 物理学报, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [9] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [10] 王军国, 刘福生, 李永宏, 张明建, 张宁超, 薛学东. 在石英界面处液态水的冲击结构相变. 物理学报, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [11] 邵琛玮, 王振华, 李艳男, 赵骞, 张林. AuCu249合金团簇热稳定性的原子尺度计算研究. 物理学报, 2011, 60(8): 083602. doi: 10.7498/aps.60.083602
    [12] 李永宏, 刘福生, 程小理, 张明建, 薛学东. 冲击加载条件下融石英对水的凝固相变的诱导效应. 物理学报, 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [13] 陈永涛, 唐小军, 李庆忠. Fe基α相合金的冲击相变及其对层裂行为的影响研究. 物理学报, 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [14] 徐文武, 宋晓艳, 李尔东, 魏君, 李凌梅. 纳米尺度下Sm-Co合金体系中相组成与相稳定性的研究. 物理学报, 2009, 58(5): 3280-3286. doi: 10.7498/aps.58.3280
    [15] 李永华, 刘常升, 孟繁玲, 王煜明, 郑伟涛. NiTi合金薄膜厚度对相变温度影响的X射线光电子能谱分析. 物理学报, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [16] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析. 物理学报, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
计量
  • 文章访问数:  6538
  • PDF下载量:  686
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-19
  • 修回日期:  2012-07-23
  • 刊出日期:  2013-01-05

/

返回文章
返回