搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预应力对多晶铁冲击行为影响的微观模拟研究

任国武 张世文 范诚 陈永涛

引用本文:
Citation:

预应力对多晶铁冲击行为影响的微观模拟研究

任国武, 张世文, 范诚, 陈永涛

Influence of prestress on shock behavior of polycrystalline iron via atomistic simulations

Ren Guo-Wu, Zhang Shi-Wen, Fan Cheng, Chen Yong-Tao
PDF
导出引用
  • 冲击加载铁动力学响应是当前冲击波领域金属材料塑性和相变行为研究最为关注的焦点之一.本文采用分子动力学模拟方法开展预应力作用下冲击加载多晶铁的动力学行为研究.模拟结果表明,随着预应力的增加,导致弹塑转变应力(Hugoniot弹性极限)和冲击波速度提高,符合已有的理论分析结果.微观晶体结构表征则发现较大的预应力导致剪应力大于屈服应力,塑性弛豫时间缩短,加快多晶铁相转变.进一步通过与平面及柱壳纯铁冲击加载获得的自由面速度剖面对比分析,证实了模拟结果.
    Plasticity behavior and phase transition of metal Fe subjected to shock loading have attracted considerable attention in shock physics community, in particular for underlying relationship between them. Experimental examinations and atomistic simulations on shocked Fe have displayed a three-wave structure: elastic wave, plastic wave and transformation wave. However, these studies are primarily limited to the one-dimensional planar case. Recently, owing to the rapid development of experimental techniques, investigating dynamic property of shocked metal has extended to the multi-dimensional loading conditions, such as cylindrical or spherical shocks. In this regard, fruitful findings are achieved, for example, twinning ratio in polycrystalline Fe under implosive compression is found to be much higher than that under planar shock, implying that the the complex stress state plays a critical role. In this paper, we explore the effects of prestress on plasticity and phase transition of shocked polycrystalline iron. The imposed presstress normal to the impact direction in one-dimensional planar shocking represents the varying deviatoric stress, and does not nearly affect the principal stress. The utilized empirical potential for iron could describe the plasticity dislocation and phase transition very well. The simulations show that as the prestress increases, the shock speed at elastic stage and Hugoniot elastic limit increase, which is in accordance with the theoretical analyses based on shock wave theory and experimental measurement. Meanwhile the plastic wave speed increases more quickly and catches up with the transformation wave more easily, resulting in a steep shockwave front. Atomistic snapshots show that plasticity dislocation stemming from the grain boundary precedes phase transition, where most of BCC atoms are transformed into the HCP atoms and shear stress significantly decreases. Further observations from these images find that plastic zone becomes narrower with increasing prestress, representing a shorter plastic relaxation time, which accelerates the completion of phase transition. This rapid phase transition process is also indicated by quantitatively evaluating the ratio of transitioned closed packed atoms as a function of evolution time. The origin based on the atomistical prediction model of Fe phase transition is attributed to the fact that higher prestress gives rise to the larger von-Mises stress for easier dislocation emission while lower one cannot. But the final transformed atoms are independent of prestress. Additionally, the measured free surface velocity profiles from planar and cylindrical impact loading validate the simulations conducted here. These findings will help to understand experimentally the microscopically dynamic evolution of Fe, imposed by complex stress state.
      通信作者: 陈永涛, 13404005190@163.com
    • 基金项目: 国家自然科学基金(批准号:11272006,11272297)和中物院发展基金(批准号:2014B0201018)资助的课题.
      Corresponding author: Chen Yong-Tao, 13404005190@163.com
    • Funds: Projected supported by the National Science Foundation of China (Grant Nos. 11272006, 11272297) and the Science and Technology Foundation of China Academy of Engineering Physics (Grant No. 2014B0201018).
    [1]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872

    [2]

    Jensen B J, Gray Ⅲ G T, Hixson R S 2009 J. Appl. Phys. 105 103502

    [3]

    Chen Y T, Tang X J, Li Q Z 2011 Acta Phys. Sin. 60 046401 (in Chinese) [陈永涛, 唐小军, 李庆忠2011物理学报60 046401]

    [4]

    Gunkelmann N, Bringa E M, Kang K, Ackland G J, Ruestes C, Urbassek H M 2012 Phys. Rev. B 86 144111

    [5]

    Gunkelmann N, Bringa E M, Tramontina D R, Ruestes C J, Suggit M J, Higginbotham A, Wark J S, Urbassek H M 2014 Phys. Rev. B 89 140102

    [6]

    Gunkelmann N, Tramontina D R, Bringa E M, Urbassek H M 2015 J. Appl. Phys. 117 085901

    [7]

    Wang K, Xiao S, Deng H, Zhu W, Hu W 2014 Int. J. Plast. 59 180

    [8]

    Wang K, Zhu W, Xiao S, Chen K, Deng H, Hu W 2015 Int. J. Plast. 71 218

    [9]

    Kaul A M, Ivanovsky A V, Atchison W L, et al. 2014 J. Appl. Phys. 115 023516

    [10]

    Murr L E 1987 Metallurgical Effects of Shock and High-strain-rate Loading: Materials as High Strain Rates (Amsterdam: Elsevier) p34

    [11]

    Wang S J, Sui M L, Chen Y T, Lu Q H, Ma E, Pei X Y, Li Q Z, Hu H B 2013 Sci. Rep. 3 1086

    [12]

    Xiao B, Chen Y T, Sui M L 2015 J. Chin. Electr. Microsc. Soc. 34 401(in Chinese) [肖博, 陈永涛, 隋曼龄2015电子显微学报34 401]

    [13]

    Zhang S W, Liu C L, Li Q Z, Liu Q 2008 Chin. J. Theor. Appl. Mech. 40 535 (in Chinese) [张世文, 刘仓理, 李庆忠, 刘乔2008力学学报40 535]

    [14]

    Zhang S, Liu C, Ren G, Li Q 2015 Combust. Expl. Shock Waves 51 1

    [15]

    Plimpton S 1995 J. Compt. Phys. 117 1

    [16]

    Stukowski A 2000 Modell. Simul. Mater. Sci. Eng. 18 015012

  • [1]

    Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872

    [2]

    Jensen B J, Gray Ⅲ G T, Hixson R S 2009 J. Appl. Phys. 105 103502

    [3]

    Chen Y T, Tang X J, Li Q Z 2011 Acta Phys. Sin. 60 046401 (in Chinese) [陈永涛, 唐小军, 李庆忠2011物理学报60 046401]

    [4]

    Gunkelmann N, Bringa E M, Kang K, Ackland G J, Ruestes C, Urbassek H M 2012 Phys. Rev. B 86 144111

    [5]

    Gunkelmann N, Bringa E M, Tramontina D R, Ruestes C J, Suggit M J, Higginbotham A, Wark J S, Urbassek H M 2014 Phys. Rev. B 89 140102

    [6]

    Gunkelmann N, Tramontina D R, Bringa E M, Urbassek H M 2015 J. Appl. Phys. 117 085901

    [7]

    Wang K, Xiao S, Deng H, Zhu W, Hu W 2014 Int. J. Plast. 59 180

    [8]

    Wang K, Zhu W, Xiao S, Chen K, Deng H, Hu W 2015 Int. J. Plast. 71 218

    [9]

    Kaul A M, Ivanovsky A V, Atchison W L, et al. 2014 J. Appl. Phys. 115 023516

    [10]

    Murr L E 1987 Metallurgical Effects of Shock and High-strain-rate Loading: Materials as High Strain Rates (Amsterdam: Elsevier) p34

    [11]

    Wang S J, Sui M L, Chen Y T, Lu Q H, Ma E, Pei X Y, Li Q Z, Hu H B 2013 Sci. Rep. 3 1086

    [12]

    Xiao B, Chen Y T, Sui M L 2015 J. Chin. Electr. Microsc. Soc. 34 401(in Chinese) [肖博, 陈永涛, 隋曼龄2015电子显微学报34 401]

    [13]

    Zhang S W, Liu C L, Li Q Z, Liu Q 2008 Chin. J. Theor. Appl. Mech. 40 535 (in Chinese) [张世文, 刘仓理, 李庆忠, 刘乔2008力学学报40 535]

    [14]

    Zhang S, Liu C, Ren G, Li Q 2015 Combust. Expl. Shock Waves 51 1

    [15]

    Plimpton S 1995 J. Compt. Phys. 117 1

    [16]

    Stukowski A 2000 Modell. Simul. Mater. Sci. Eng. 18 015012

  • [1] 张学阳, 胡望宇, 戴雄英. 冲击下铁的各向异性对晶界附近相变的影响. 物理学报, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [3] 马通, 谢红献. 单晶铁沿[101]晶向冲击过程中面心立方相的形成机制. 物理学报, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [4] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变. 物理学报, 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [5] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响. 物理学报, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [6] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [7] 袁晨晨. 金属玻璃的键态特征与塑性起源. 物理学报, 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [8] 颜细平, 彭政, 何菲菲, 蒋亦民. 类固态颗粒物质的剪切弹性行为测量. 物理学报, 2016, 65(12): 124501. doi: 10.7498/aps.65.124501
    [9] 王歆钰, 储瑞江, 魏胜男, 董正超, 仲崇贵, 曹海霞. 应力作用下EuTiO3铁电薄膜电热效应的唯象理论研究. 物理学报, 2015, 64(11): 117701. doi: 10.7498/aps.64.117701
    [10] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变. 物理学报, 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [11] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [12] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [13] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [14] 何安民, 邵建立, 秦承森, 王裴. 单晶Cu冲击加载及卸载下塑性行为的微观模拟. 物理学报, 2009, 58(8): 5667-5672. doi: 10.7498/aps.58.5667
    [15] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [16] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [17] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [18] 李 卫, 冯良桓, 武莉莉, 蔡亚平, 张静全, 郑家贵, 蔡 伟, 黎 兵, 雷 智, 张冬敏. CdSxTe1-x多晶薄膜的制备与性质研究. 物理学报, 2005, 54(4): 1879-1884. doi: 10.7498/aps.54.1879
    [19] 贺西平, 李 斌. 弯张换能器装配预应力及入水后的变化. 物理学报, 2004, 53(2): 498-502. doi: 10.7498/aps.53.498
    [20] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫. 物理学报, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
计量
  • 文章访问数:  4834
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-06
  • 修回日期:  2016-07-19
  • 刊出日期:  2016-10-05

/

返回文章
返回