搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于55 nm DICE结构的单粒子翻转效应模拟研究

张幸 刘玉林 李刚 燕少安 肖永光 唐明华

引用本文:
Citation:

基于55 nm DICE结构的单粒子翻转效应模拟研究

张幸, 刘玉林, 李刚, 燕少安, 肖永光, 唐明华

Three-dimensional numerical simulation of single event upset effect based on 55 nm DICE latch unit

Zhang Xing, Liu Yu-Lin, Li Gang, Yan Shao-An, Xiao Yong-Guang, Tang Ming-Hua
PDF
HTML
导出引用
  • 单粒子翻转(single event upset, SEU)是器件在辐照空间中应用的关键难题, 本文以55 nm加固锁存单元为研究载体, 通过三维数值模拟方法, 获得了重离子不同入射条件下的线性能量转移(linear energy transfer, LET)阈值和电压脉冲变化曲线, 研究了双互锁存储单元(dual interlockded storage cell, DICE)的抗辐照性能和其在不同入射条件下的SEU效应. 研究表明, 低LET值的粒子以小倾斜角入射器件时, 降低了器件间的总电荷收集量, 使得主器件节点的电压峰值和电压脉宽最小, 器件SEU敏感性最低; 由于空穴与电子迁移率的差异, 导致DICE锁存器中Nhit的入射角敏感性远大于Phit; 合理调节晶体管间距可以削弱电荷共享效应, 使得从器件总电荷收集量减小, 仿真计算得到此工艺下晶体管间距不能小于1.2 μm. 相关仿真结果可为DICE锁存单元单粒子效应的物理机制研究和加固技术提供理论依据和数据支持, 有助于加快存储器件在宇航领域的应用步伐.
    With the development of nanoscale circuit technology, the on-track error rate of digital circuit and the effect of single event upset have become more pronounced. The radiation resistance research on DICE SRAM or DICE flip-flop device has been carried out extensively, including 65 nm, 90 nm, and 130 nm. However, the research on 55 nm DICE latch has not been reported. Using a three-dimensional device model of the 55 nm bulk silicon process established by the simulation tool TCAD, we verify the reinforcement performance of the DICE circuit, and clarify the effects of different incident conditions on DICE circuits. At the same time, we carry out a comparison of anti-SEU performance between NMOS transistor and PMOS transistor in the 55 nm process through comparative simulation experiments and quantitative analysis. The result shows that one of the important factors is the LET value which affects the generation rate of electron-hole pairs. A higher LET value will extend the upset recovery time of device and increase the peak of voltage. In addition, the difference in charge-sharing mechanism between transistors leads to the recovery time of PMOS higher than that of NMOS. As the angle of incidence increases, the charge-sharing mechanism between adjacent devices is enhanced, and electron-hole pairs ionized in sensitive regions increase. Due to the difference in charge mobility, the sensitivity of the angle of incidence of Nhit in DICE is much greater than that of Phit. Therefore, strict tilt angle incident test evaluation is required for DICE device before practical application. Finally, the large distance between adjacent MOS tubes will weaken the charge-sharing mechanism and reduce the charge collection of adjacent MOS tubes. Simulation result shows that the distance between the MOS transistors in the 55 nm process cannot be less than 1.2 μm. The relevant simulation results can provide a theoretical basis and data for supporting the study of the physical mechanism of SEU and reinforcement technology, thereby promoting the application of memory devices to the aerospace field.

    更正: 基于55 nm DICE结构的单粒子翻转效应模拟研究[物理学报 2024, 73(6): 066103] 

    张幸, 刘玉林, 李刚, 燕少安, 肖永光, 唐明华. 基于55 nm DICE结构的单粒子翻转效应模拟研究[物理学报 2024, 73(6): 066103]. 物理学报, 2024, 73(7): 079901. doi: 10.7498/aps.73.079901
      通信作者: 唐明华, tangminghua@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 92164108, U23A20322, 11835008)、湖南省自然科学基金(批准号: 2023JJ50009, 2023JJ30599)和辐射应用创新中心基金(批准号: KFZC2020020901)资助的课题.
      Corresponding author: Tang Ming-Hua, tangminghua@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92164108, U23A20322, 11835008), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2023JJ50009, 2023JJ30599), and the Radiation Application Innovation Center Fund, China (Grant No. KFZC2020020901).
    [1]

    Lu Y F, Zhai X J, Saha S, Ehsan S, McDonald-Maier K 2022 IEEE Syst. J. 16 1436Google Scholar

    [2]

    Rathore P, Nakhate S 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems Delhi, India, July 4–6, 2016 p38

    [3]

    Trivedi R, Devashrayee N M, Mehta U S, Desai N M, Patel H 2015 19th International Symposium on VLSI Design and Test Ahmedabad, India, June 26–29, 2015 p46

    [4]

    Li H S, Wu L S, Yang B, Jiang Y H 2017 J. Semicond. 38 085009Google Scholar

    [5]

    李海松, 杨博, 蒋轶虎, 高利军, 杨靓 2022 电子科技大学学报 51 458

    Li H S, Yang B, Jiang Y H, Gao L J, Yang L 2022 J. UEST China 51 458

    [6]

    江新帅, 罗尹虹, 赵雯, 张凤祁, 王坦 2023 物理学报 72 036101Google Scholar

    Jiang X S, Luo Y H, Zhao W, Zhang F Q, Wang T 2023 Acta Phys. Sin. 72 036101Google Scholar

    [7]

    Chi Y Q, Cai C, He Z, Wu Z Y, Fang Y H, Chen J J, Liang B 2022 Electronics 11 972Google Scholar

    [8]

    Lin T, Chong K, Shu W, Lwin N K Z, Jiang J Z, Chang J S 2016 IEEE International Symposium on Circuits and Systems Montreal, QC, Canada, May 22–25, 2016 p966

    [9]

    Diggins Z J, Gaspard N J, Mahatme N N, Jagannathan S, Loveless T D, Reece T R, Bhuva B L, Witulski A F, Massengill L W, Wen S J, Wong R 2013 IEEE Trans. Nucl. Sci. 60 4394Google Scholar

    [10]

    Moradi F, Panagopoulos G, Karakonstantis G, Farkhani H, Wisland D T, Madsen J K, Mahmoodi H, Roy K 2014 Microelectron. J. 45 23Google Scholar

    [11]

    Maru A, Shindou H, Ebihara T, Makihara A, Hirao T, Kuboyama S 2010 IEEE Trans. Nucl. Sci. 57 3602Google Scholar

    [12]

    Xu H, Zeng Y, Liang B 2015 IEICE Electron. Expr. 12 20150629Google Scholar

    [13]

    Luo Y Y, Zhang F Q, Wei C, Ding L L, Pan X Y 2019 Microelectron. Reliab. 94 24Google Scholar

    [14]

    Hsiao S M H, Wang L P T, Liang A C W, Wen C H P 2022 IEEE International Test Conference Anaheim, CA, USA, August 24–26, 2022 p128

    [15]

    罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas 2020 物理学报 69 018501Google Scholar

    Luo Y H, Zhang F Q, Guo H X, Wojtek H 2020 Acta Phys. Sin. 69 018501Google Scholar

    [16]

    He Z, Zhao S W, Cai C, Yan X Y, Liu Y Z, Gao J L S 2021 Nucl. Sci. Tech. 32 139Google Scholar

    [17]

    琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉 2023 物理学报 72 026102Google Scholar

    Ju A A, Guo H X, Zhang F Q, Liu Y, Zhong X L, Ouyang X P, Ding L L, Lu C, Zhang H, Feng Y H 2023 Acta Phys. Sin. 72 026102Google Scholar

    [18]

    Dodd P E 2006 IEEE T. Device. Mat. Re.5 343Google Scholar

    [19]

    Maru A, Matsuda A, Kuboyama S, Yoshimoto M 2022 IEICE T. Electron. E105-C 47Google Scholar

    [20]

    Wang J, Li L 2014 15th International Conference on Electronic Packaging Technology Chengdu, China, August 12–15, 2014 p1116

  • 图 1  MOS管电流-电压特性校准结果 (a) nfet器件Id -Vd校准曲线; (b) nfet器件Id -Vg校准曲线; (c) pfet器件Id -Vd校准曲线; (d) pfet器件Id -Vg校准曲线

    Fig. 1.  Current-voltage characteristics calibration results of MOS tube: (a) The Id -Vd calibration curve of nfet device; (b) the Id -Vg calibration curve of nfet device; (c) the Id -Vd calibration curve of pfet device; (d) the Id-Vg calibration curve of pfet device.

    图 2  标准锁存单元电路原理图(VDD, 电源电压; VSS, 接地端电压; CLK1/CLK2, 时钟信号) (a) 标准锁存单元电路中粒子轰击MN1漏极; (b) 标准锁存单元电路中粒子轰击MP2漏极

    Fig. 2.  Circuit diagram of standard latch cell: (a) Particle bombards the drain of MN1 in the standard latch cell circuit; (b) particle bombards the drain of MP2 in the standard latch cell circuit. VDD, power voltage; VSS, ground terminal voltage; CLK1/CLK2, clock signal.

    图 3  DICE结构电路原理图 (a)粒子轰击DICE电路中DN3漏极; (b)粒子轰击DICE电路中DP4漏极

    Fig. 3.  Circuit diagrams of DICE structure: (a) Particle bombards the drain of DN3 in DICE circuit; (b) particle bombards the drain of DP4 in DICE circuit.

    图 4  粒子轰击标准锁存单元中MN1漏极D1, D2节点电压变化

    Fig. 4.  Transient voltage change of D1 and D2 nodes when particle bombards the drain of MN1 in the standard latch cell circuit.

    图 5  DICE电路中粒子轰击DN3漏极各节点电压变化

    Fig. 5.  Voltage variation of each node when particle bombards the drain of DN3 in the DICE circuit.

    图 6  DICE电路原理图 (a)粒子轰击DICE电路中DN3漏极; (b)粒子轰击DICE电路中DP4漏极

    Fig. 6.  Circuit diagrams of DICE: (a) Particle bombards the drain of DN3 in DICE circuit; (b) particle bombards the drain of DP4 in DICE circuit.

    图 7  不同LET值入射时DA节点电位变化图 (a) 轰击DN3晶体管时DA节点的电位变化图; (b) 轰击DP4晶体管时DA节点的电位变化图

    Fig. 7.  Voltage variation diagram of DA node when particle incidents by different LET value: (a) Voltage variation diagram of DA node when bombarding DN3 transistor; (b) voltage variation diagram of DA node when bombarding DP4 transistor.

    图 8  粒子不同方位角入射示意图

    Fig. 8.  Diagram of particle incidents from different angles.

    图 9  不同角度入射时主、从器件电位变化图 (a) 轰击DN3管漏极时主器件电位变化图; (b) 轰击DN3管漏极时从器件电位变化图; (c) 轰击DP4管漏极时主器件电位变化图; (d) 轰击DP4管漏极时从器件电位变化图

    Fig. 9.  Voltage variation diagrams of master and slave devices when particle incidents from different angles: (a) Voltage variation diagram of the master device when particle bombards the drain of DN3; (b) voltage variation diagram of the slave device when particle bombards the drain of the DN3; (c) voltage variation diagram of the master device when particle bombards the drain of the DP4; (d) voltage variation diagram of the slave device when particle bombards the drain of DP4.

    图 10  器件模型示意图 (a) 二维横截面图; (b) 二维俯视图

    Fig. 10.  Device model schematic: (a) 2D cross-sectional view; (b) 2D top view.

    图 11  MOS管漏极间距对电压脉冲的影响 (a) 轰击DN3管漏极时从器件电位变化图; (b) 轰击DP4管漏极时从器件电位变化图

    Fig. 11.  Influence of the distance between the drain of MOS tubes on the transient pulse: (a) Slave device voltage change diagram when bombarding the drain of the DN3 tube; (b) slave device voltage change diagram when bombarding the drain of the DP4 tube.

    表 1  55 nm MOS晶体管工艺参数

    Table 1.  55 nm MOS transistor process parameters.

    名称 NMOS (nfet) PMOS (pfet)
    栅长/nm 60 60
    栅极氧化物厚度/m 2.6×10–9 2.8×10–9
    源极/漏极结深/m 1.0×10–7 1.0×10–8
    多晶硅栅极掺杂浓度/cm–3 1.0×1021 2.6×1020
    沟道掺杂浓度/cm–3 3.2×1017 2.0×1018
    源极/漏极掺杂浓度/cm–3 1.0×1020 1.0×1020
    下载: 导出CSV

    表 2  DICE电路中NMOS的翻转阈值

    Table 2.  Toggle threshold of NMOS in DICE circuit.

    入射角度/(°) NMOS管间距/μm
    0.4 0.8 1.2
    LET阈值/
    (MeV·cm2·mg–1)
    0 14 50+ 50++
    30 10 22 50+
    45 5 13 30
    60 4 6 10
    下载: 导出CSV

    表 3  DICE电路中PMOS的翻转阈值

    Table 3.  Toggle threshold of PMOS in DICE circuit.

    入射角度/(°) PMOS管间距/μm
    0.4 0.8 1.2
    LET阈值/
    (MeV·cm2·mg–1)
    0 10 23 50+
    30 9 16 32
    45 8 12 19
    60 7 9 16
    下载: 导出CSV
  • [1]

    Lu Y F, Zhai X J, Saha S, Ehsan S, McDonald-Maier K 2022 IEEE Syst. J. 16 1436Google Scholar

    [2]

    Rathore P, Nakhate S 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems Delhi, India, July 4–6, 2016 p38

    [3]

    Trivedi R, Devashrayee N M, Mehta U S, Desai N M, Patel H 2015 19th International Symposium on VLSI Design and Test Ahmedabad, India, June 26–29, 2015 p46

    [4]

    Li H S, Wu L S, Yang B, Jiang Y H 2017 J. Semicond. 38 085009Google Scholar

    [5]

    李海松, 杨博, 蒋轶虎, 高利军, 杨靓 2022 电子科技大学学报 51 458

    Li H S, Yang B, Jiang Y H, Gao L J, Yang L 2022 J. UEST China 51 458

    [6]

    江新帅, 罗尹虹, 赵雯, 张凤祁, 王坦 2023 物理学报 72 036101Google Scholar

    Jiang X S, Luo Y H, Zhao W, Zhang F Q, Wang T 2023 Acta Phys. Sin. 72 036101Google Scholar

    [7]

    Chi Y Q, Cai C, He Z, Wu Z Y, Fang Y H, Chen J J, Liang B 2022 Electronics 11 972Google Scholar

    [8]

    Lin T, Chong K, Shu W, Lwin N K Z, Jiang J Z, Chang J S 2016 IEEE International Symposium on Circuits and Systems Montreal, QC, Canada, May 22–25, 2016 p966

    [9]

    Diggins Z J, Gaspard N J, Mahatme N N, Jagannathan S, Loveless T D, Reece T R, Bhuva B L, Witulski A F, Massengill L W, Wen S J, Wong R 2013 IEEE Trans. Nucl. Sci. 60 4394Google Scholar

    [10]

    Moradi F, Panagopoulos G, Karakonstantis G, Farkhani H, Wisland D T, Madsen J K, Mahmoodi H, Roy K 2014 Microelectron. J. 45 23Google Scholar

    [11]

    Maru A, Shindou H, Ebihara T, Makihara A, Hirao T, Kuboyama S 2010 IEEE Trans. Nucl. Sci. 57 3602Google Scholar

    [12]

    Xu H, Zeng Y, Liang B 2015 IEICE Electron. Expr. 12 20150629Google Scholar

    [13]

    Luo Y Y, Zhang F Q, Wei C, Ding L L, Pan X Y 2019 Microelectron. Reliab. 94 24Google Scholar

    [14]

    Hsiao S M H, Wang L P T, Liang A C W, Wen C H P 2022 IEEE International Test Conference Anaheim, CA, USA, August 24–26, 2022 p128

    [15]

    罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas 2020 物理学报 69 018501Google Scholar

    Luo Y H, Zhang F Q, Guo H X, Wojtek H 2020 Acta Phys. Sin. 69 018501Google Scholar

    [16]

    He Z, Zhao S W, Cai C, Yan X Y, Liu Y Z, Gao J L S 2021 Nucl. Sci. Tech. 32 139Google Scholar

    [17]

    琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉 2023 物理学报 72 026102Google Scholar

    Ju A A, Guo H X, Zhang F Q, Liu Y, Zhong X L, Ouyang X P, Ding L L, Lu C, Zhang H, Feng Y H 2023 Acta Phys. Sin. 72 026102Google Scholar

    [18]

    Dodd P E 2006 IEEE T. Device. Mat. Re.5 343Google Scholar

    [19]

    Maru A, Matsuda A, Kuboyama S, Yoshimoto M 2022 IEICE T. Electron. E105-C 47Google Scholar

    [20]

    Wang J, Li L 2014 15th International Conference on Electronic Packaging Technology Chengdu, China, August 12–15, 2014 p1116

  • [1] 李志旋, 岳明鑫, 周官群. 三维电磁扩散场数值模拟及磁化效应的影响. 物理学报, 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [2] 梁煜, 关奔, 翟志刚, 罗喜胜. 激波汇聚效应对球形气泡演化影响的数值研究. 物理学报, 2017, 66(6): 064701. doi: 10.7498/aps.66.064701
    [3] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [4] 高新强, 沈俊, 和晓楠, 唐成春, 戴巍, 李珂, 公茂琼, 吴剑峰. 耦合高压斯特林制冷效应的复合磁制冷循环的数值模拟. 物理学报, 2015, 64(21): 210201. doi: 10.7498/aps.64.210201
    [5] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X特征辐射谱线数值模拟及考虑叠加效应后的修正. 物理学报, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [6] 黄培培, 刘大刚, 刘腊群, 王辉辉, 夏梦局, 陈颖. 单路脉冲功率真空装置的三维数值模拟研究. 物理学报, 2013, 62(19): 192901. doi: 10.7498/aps.62.192901
    [7] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟. 物理学报, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [8] 蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富. 外磁场对介质表面次级电子倍增效应的影响. 物理学报, 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [9] 马理强, 刘谋斌, 常建忠, 苏铁熊, 刘汉涛. 液滴冲击液膜问题的光滑粒子动力学模拟. 物理学报, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [10] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [11] 李哲, 江海河, 王礼, 杨经纬, 吴先友. 2 m Cr,Tm,Ho:YAG激光热退偏效应的数值模拟及实验研究. 物理学报, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [12] 王蓬, 田修波, 汪志健, 巩春志, 杨士勤. 有限尺寸方靶等离子体离子注入动力学的三维粒子模拟研究. 物理学报, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [13] 庞学霞, 邓泽超, 贾鹏英, 梁伟华. 大气等离子体中氮氧化物粒子行为的数值模拟. 物理学报, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [14] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [15] 郑容森, 吕集尔, 朱留华, 陈时东, 庞寿全. 主干道交通流的路口效应. 物理学报, 2009, 58(8): 5244-5250. doi: 10.7498/aps.58.5244
    [16] 杨玉娟, 王锦程, 张玉祥, 朱耀产, 杨根仓. 采用多相场法研究三维层片共晶生长的厚度效应. 物理学报, 2008, 57(8): 5290-5295. doi: 10.7498/aps.57.5290
    [17] 庞学霞, 邓泽超, 董丽芳. 不同电离度下大气等离子体粒子行为的数值模拟. 物理学报, 2008, 57(8): 5081-5088. doi: 10.7498/aps.57.5081
    [18] 江慧丰, 张青川, 陈忠家, 伍小平. 退火铝合金中Portevin-Le Chatelier效应的数值模拟研究. 物理学报, 2006, 55(6): 2856-2859. doi: 10.7498/aps.55.2856
    [19] 廖高华, 翁甲强, 成丽春, 方锦清. 束晕-混沌控制中的粒子跟踪模拟研究. 物理学报, 2005, 54(1): 35-42. doi: 10.7498/aps.54.35
    [20] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, 2001, 50(9): 1774-1778. doi: 10.7498/aps.50.1774
计量
  • 文章访问数:  2457
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-25
  • 修回日期:  2023-12-27
  • 上网日期:  2024-01-09
  • 刊出日期:  2024-03-20

/

返回文章
返回