搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶解椭圆颗粒沉降的介观尺度数值模拟

刘汉涛 江山 王艳华 王婵娟 李海桥

引用本文:
Citation:

溶解椭圆颗粒沉降的介观尺度数值模拟

刘汉涛, 江山, 王艳华, 王婵娟, 李海桥

Mesoscale simulation of the sedimentation of melting elliptical particle

Liu Han-Tao, Jian Shan, Wang Yan-Hua, Wang Chan-Juan, Li Hai-Qiao
PDF
导出引用
  • 在任意拉格朗日欧拉(ALE)算法模拟有热对流影响的颗粒两相流动的直接数值模拟基础上, 通过建立颗粒溶解速度和颗粒表面热流密度的关系, 对溶解的椭圆颗粒在垂直管道内牛顿流体中的沉降进行了直接数值模拟. 计算结果表明:与等温惰性椭圆颗粒沉降相比, 流体的对流运动、颗粒质量以及形状的变化等因素使溶解的椭圆颗粒在不同初始角度沉降时, 颗粒沉降动态尾迹、颗粒受力、颗粒沉降速度等都发了较大变化.
    In this paper, a mathematical relationship between particle melting rate and its surface heat flux is established to solve the problem of melting of elliptical particle sedimentation based on the direct numerical simulations of particle sedimentation when taking account of thermal convection within the framework of the arbitrary Lagrangian-Eulerian technique. The elliptical particle with different initial angles is released in a mesoscale channel under gravity. Compared with the isothermal elliptical particle sedimentation, the melting elliptical particle shows large differences in moving trajectories, the forces exerting on the particle and velocities, which come from the consideration of fluid convection, mass loss, and shape change. More specifically, 1) in the case of isothermal elliptical particle sedimentation, the velocity, the horizontal trajectory, and the force vary periodically. However, the amplitude recedes gradually, and finally becomes zero in the case of the melting elliptical particle, which is caused by the mass lost and shape change. 2) The equilibrium position of the major axis will finally be perpendicular to the direction of sedimentation. So, the initial angle of slope (θ) usually affects the sedimentation in the beginning, and vanishes after a period of time. 3) The downward convection induced by the cold fluid accelerates the velocity of the melting particle. The angular velocity, force and horizontal amplitude of the melting particle become smaller than those of the isothermal particle, and finally recedes to zero. In our study, the investigation of coupled heat transfer, fluid-solid system and shape change is carried out, and some new features are found out.
    • 基金项目: 国家自然科学基金(批准号:51476150),山西省国际科技合作项目(批准号:2014081028)和山西省高等学校科技创新项目资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51476150) the Fund for International Joint Research Program of Shanxi Province, China (Grant No. 2014081028), and the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi Province, china.
    [1]

    Kong G, Braun R D, Dewhirst M W 2000 Cancer Res. 60 4440

    [2]

    Taylor R A, Otanicar T, Rosengarten G 2012 LSA 11

    [3]

    Choi S U S 1995 ASME FED 231 99

    [4]

    Keblinski P, Eastman J A, Cahill D G 2005 Mater. Today 8 36

    [5]

    Liu H T, Liu M B, Chang J Z, Su T X 2013 Acta Phys. Sin. 62 064705 (in Chinese) [刘汉涛, 刘谋斌, 常建忠, 苏铁熊 2013 物理学报 62 064705]

    [6]

    Liu M, Meakin P, Huang H 2006 Phys. Fluids 18 017101

    [7]

    Liu M B, Chang J Z, Liu H T, Su T X 2011 Int. J. Comp. Meth. 8 637

    [8]

    Mackie A D, Bonet D, Avalos J B, Navas V 1999 Phys. Che. Chem. Phys. 1 2039

    [9]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 7556 (in Chinese) [刘谋斌, 常建忠 2010 物理学报 59 7556]

    [10]

    Chang J Z, Liu H T, Su T X, Liu M B 2011 Int. J. Comp. Meth. 8 851

    [11]

    Qiu Y, You C F, Qi H Y, Xu X C 2003 Advances in mechanics 33 507[仇轶, 由长福, 祁海鹰, 徐旭常 2003力学进展 33 507]

    [12]

    Gan H, Chang J Z, James J. Feng, Howard H. Hu 2003 J. Fluid Mech. 481 385

    [13]

    Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703 (in Chinese) [毛威, 郭照立, 王亮 2013 物理学报 62 084703]

    [14]

    Yu Z S, Shao X M, Wachs A 2006 J. Comp. Phys. 217 424

    [15]

    Qi D W 2000 Int. J. Multiphase Flow 26 421

    [16]

    Xia Z H, connington K W, Rapaka S, Yue P T, Feng J J, Chen S Y 2009 J. Fluid Mech. 625 249

    [17]

    Liu H T, Tong Z H, An K, Ma L Q 2009 Acta Phys. Sin. 58 6369 (in Chinese) [刘汉涛, 仝志辉, 安康, 马理强 2009 物理学报 58 6369]

    [18]

    Gray D D, Giorgin A 1976 Int. J. Heat Mass Transfer 19 545

    [19]

    Gan H, Feng J J, Hu H H 2003 Int. J. Multiphase flow 29 751

    [20]

    Liu H T, Chang J Z 2013 Acta Phys. Sin. 62 084401 (in Chinese) [刘汉涛, 常建忠 2013 物理学报 62 084401]

    [21]

    Tong Z H, Liu H T, Chang J Z, An Kang 2012 Acta Phys. Sin. 61 024401 (in Chinese) [仝志辉, 刘汉涛, 常建忠, 安康 2012 物理学报 61 024401]

    [22]

    McLeod P, Riley D S, Sparks R S J. 1996 J. Fluid Mech. 327 393

  • [1]

    Kong G, Braun R D, Dewhirst M W 2000 Cancer Res. 60 4440

    [2]

    Taylor R A, Otanicar T, Rosengarten G 2012 LSA 11

    [3]

    Choi S U S 1995 ASME FED 231 99

    [4]

    Keblinski P, Eastman J A, Cahill D G 2005 Mater. Today 8 36

    [5]

    Liu H T, Liu M B, Chang J Z, Su T X 2013 Acta Phys. Sin. 62 064705 (in Chinese) [刘汉涛, 刘谋斌, 常建忠, 苏铁熊 2013 物理学报 62 064705]

    [6]

    Liu M, Meakin P, Huang H 2006 Phys. Fluids 18 017101

    [7]

    Liu M B, Chang J Z, Liu H T, Su T X 2011 Int. J. Comp. Meth. 8 637

    [8]

    Mackie A D, Bonet D, Avalos J B, Navas V 1999 Phys. Che. Chem. Phys. 1 2039

    [9]

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 7556 (in Chinese) [刘谋斌, 常建忠 2010 物理学报 59 7556]

    [10]

    Chang J Z, Liu H T, Su T X, Liu M B 2011 Int. J. Comp. Meth. 8 851

    [11]

    Qiu Y, You C F, Qi H Y, Xu X C 2003 Advances in mechanics 33 507[仇轶, 由长福, 祁海鹰, 徐旭常 2003力学进展 33 507]

    [12]

    Gan H, Chang J Z, James J. Feng, Howard H. Hu 2003 J. Fluid Mech. 481 385

    [13]

    Mao W, Guo Z L, Wang L 2013 Acta Phys. Sin. 62 084703 (in Chinese) [毛威, 郭照立, 王亮 2013 物理学报 62 084703]

    [14]

    Yu Z S, Shao X M, Wachs A 2006 J. Comp. Phys. 217 424

    [15]

    Qi D W 2000 Int. J. Multiphase Flow 26 421

    [16]

    Xia Z H, connington K W, Rapaka S, Yue P T, Feng J J, Chen S Y 2009 J. Fluid Mech. 625 249

    [17]

    Liu H T, Tong Z H, An K, Ma L Q 2009 Acta Phys. Sin. 58 6369 (in Chinese) [刘汉涛, 仝志辉, 安康, 马理强 2009 物理学报 58 6369]

    [18]

    Gray D D, Giorgin A 1976 Int. J. Heat Mass Transfer 19 545

    [19]

    Gan H, Feng J J, Hu H H 2003 Int. J. Multiphase flow 29 751

    [20]

    Liu H T, Chang J Z 2013 Acta Phys. Sin. 62 084401 (in Chinese) [刘汉涛, 常建忠 2013 物理学报 62 084401]

    [21]

    Tong Z H, Liu H T, Chang J Z, An Kang 2012 Acta Phys. Sin. 61 024401 (in Chinese) [仝志辉, 刘汉涛, 常建忠, 安康 2012 物理学报 61 024401]

    [22]

    McLeod P, Riley D S, Sparks R S J. 1996 J. Fluid Mech. 327 393

  • [1] 吕伟, 汪京辉, 房志明, 毛盾. 基于介观元胞自动机的城市区域人员疏散模拟方法. 物理学报, 2021, 70(10): 100706. doi: 10.7498/aps.70.20210018
    [2] 尹慧, 赵秉新. 倾角对方腔内热对流非线性演化与分岔的影响. 物理学报, 2021, 70(11): 114401. doi: 10.7498/aps.70.20201513
    [3] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [4] 沈明仁, 刘锐, 厚美瑛, 杨明成, 陈科. 自扩散泳微观转动马达的介观模拟. 物理学报, 2016, 65(17): 170201. doi: 10.7498/aps.65.170201
    [5] 王小慧, 陈明文, 王自东. 溶液中球形晶体溶解的分析. 物理学报, 2016, 65(3): 038701. doi: 10.7498/aps.65.038701
    [6] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [7] 吴文堂, 洪延姬, 范宝春. 确定分布的展向Lorentz力调制下的槽道湍流涡结构. 物理学报, 2014, 63(5): 054702. doi: 10.7498/aps.63.054702
    [8] 史良马, 张世军, 朱仁义. 双能隙介观超导体的涡旋结构模拟. 物理学报, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [9] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟. 物理学报, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [10] 刘汉涛, 常建忠. 直接模拟中不同边界条件的实施及对沉降规律的影响. 物理学报, 2013, 62(8): 084401. doi: 10.7498/aps.62.084401
    [11] 常建忠, 刘汉涛, 刘谋斌, 苏铁熊. 介观尺度流体绕流球体的耗散粒子动力学模拟. 物理学报, 2012, 61(6): 064704. doi: 10.7498/aps.61.064704
    [12] 仝志辉, 刘汉涛, 常建忠, 安康. 双颗粒在溶解条件下沉降的多相流动特性. 物理学报, 2012, 61(2): 024401. doi: 10.7498/aps.61.024401
    [13] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [14] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [15] 刘汉涛, 常建忠, 安康, 苏铁熊. 热对流条件下双颗粒沉降的直接数值模拟. 物理学报, 2010, 59(3): 1877-1883. doi: 10.7498/aps.59.1877
    [16] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法. 物理学报, 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [17] 仝志辉. 热对流条件下固液密度比对颗粒沉降运动影响的直接数值模拟. 物理学报, 2010, 59(3): 1884-1889. doi: 10.7498/aps.59.1884
    [18] 刘汉涛, 仝志辉, 安康, 马理强. 溶解与热对流对固体颗粒运动影响的直接数值模拟. 物理学报, 2009, 58(9): 6369-6375. doi: 10.7498/aps.58.6369
    [19] 陈 华, 杜 磊, 庄奕琪. 相干介观系统中散粒噪声的Monte Carlo模拟方法研究. 物理学报, 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [20] 黄朝松, M.C.KELLEY. 大尺度赤道扩展F的数值模拟. 物理学报, 1996, 45(11): 1930-1839. doi: 10.7498/aps.45.1930
计量
  • 文章访问数:  2858
  • PDF下载量:  586
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-30
  • 修回日期:  2014-12-15
  • 刊出日期:  2015-06-05

溶解椭圆颗粒沉降的介观尺度数值模拟

  • 1. 中北大学能源环境工程与计算流体力学实验室, 太原 030051;
  • 2. 密苏里大学土木与环境工程系, 哥伦比亚, 美国 65211
    基金项目: 国家自然科学基金(批准号:51476150),山西省国际科技合作项目(批准号:2014081028)和山西省高等学校科技创新项目资助的课题.

摘要: 在任意拉格朗日欧拉(ALE)算法模拟有热对流影响的颗粒两相流动的直接数值模拟基础上, 通过建立颗粒溶解速度和颗粒表面热流密度的关系, 对溶解的椭圆颗粒在垂直管道内牛顿流体中的沉降进行了直接数值模拟. 计算结果表明:与等温惰性椭圆颗粒沉降相比, 流体的对流运动、颗粒质量以及形状的变化等因素使溶解的椭圆颗粒在不同初始角度沉降时, 颗粒沉降动态尾迹、颗粒受力、颗粒沉降速度等都发了较大变化.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回