搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

确定分布的展向Lorentz力调制下的槽道湍流涡结构

吴文堂 洪延姬 范宝春

引用本文:
Citation:

确定分布的展向Lorentz力调制下的槽道湍流涡结构

吴文堂, 洪延姬, 范宝春

Vortex structures in turbulent channel flow modulated by a steadily distributed spanwise Lorentz force

Wu Wen-Tang, Hong Yan-Ji, Fan Bao-Chun
PDF
导出引用
  • 采用直接数值模拟方法,对槽道湍流中确定分布的Lorentz力的流动控制与减阻问题进行研究. 讨论了Lorentz力作用于槽道湍流后,流场的特性和涡结构的特性,并对此类Lorentz力对槽道湍流的控制与减阻机理进行了讨论. 研究发现:1)Lorentz力诱导的层流流场壁面附近存在梯度极大的展向速度剪切层,该剪切层容易形成流向涡结构;2)在给定合适参数的确定分布的Lorentz力作用下,湍流流场仅剩周期分布的准流向涡;3)与未控制流场相比,控制后的流场中,准流向涡的抬升高度大大降低,从而减小猝发强度,使壁面阻力下降.
    Turbulence control and drag reduction in a channel flow by using a steadily distributed spanwise Lorentz force are investigated numerically via a direct numerical simulation (DNS). The characteristics of controlled flow fields and vortex structures are described. Meanwhile, the mechanisms of turbulence suppression and drag reduction by the Lorentz force are also discussed. Calculated results indicate that: (1) The shear layers with a arge gradient of spanwise velocity are created in the laminar boundary layer induced by the spanwise Lorentz force, where the streamwise vortices are easily generated by perturbations. (2) Under the action of the distributed Lorentz force with proper control parameters, only periodically well-organized streamwise vortices are observed in the near-wall region of the turbulent channel flow. (3) After controlling, the averaged lift height of inclined streamwise vortices is reduced significantly as compared with the uncontrolled turbulence flow, resulting in the reduction of the burst strength and subsequent drag reduction on the wall.
    • 基金项目: 国家自然科学基金(批准号:11172140)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11172140).
    [1]

    Kim J 2011 Phil. Trans. R. Soc. A 369 1396

    [2]

    Hasegawa H, Kasagi N 2011 J. Fluid Mech. 683 57

    [3]

    Deng B Q, Xu C X 2012 J. Fluid Mech. 710 234

    [4]

    Ma J, Jin W Y, Yi M, Li Y L 2008 Acta Phys. Sin. 59 6786 (in Chinese) [马军, 靳伍银, 易鸣, 李延龙 2008 物理学报 59 6786]

    [5]

    David G, Torsten S, Chan Y S 2012 Phys. Fluids 24 077102

    [6]

    Berger T W, Kim J, Lee C, Lim J 2000 Phys. Fluids 12 631

    [7]

    Lee C, Kim J 2002 Phys. Fluids 14 2523

    [8]

    Du Y, Symeonidis V, Karniadakis G E 2002 J. Fluid Mech. 457 1

    [9]

    Satake S, Kasagi N 1996 Int. J. Heat Fluid Flow 17 343

    [10]

    Pang J, Choi K S 2004 Phys. Fluids 16 35

    [11]

    Mei D J, Fan B C, Huang L P, Dong G 2010 Acta Phys. Sin. 59 6786 (in Chinese) [梅栋杰, 范宝春, 黄乐萍, 董刚 2010 物理学报 59 6777]

    [12]

    Mei D J, Fan B C, Chen Y H, Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2010 物理学报 59 8335]

    [13]

    Mei D J, Fan B C, Chen Y H, Ye J F 2011 Acta Mech. Sin. 43 653 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2011 力学学报 43 653]

    [14]

    Zou L Y, Bai J S, Li B Y, Tan D W, Li P, Liu C L 2008 Chin. Phys. B 17 1034

    [15]

    Lin J Z, Li Jun, Zhang W F 2005 Chin. Phys. 14 2529

    [16]

    Yang Z X, Cui G X, Xu C X, Zhang Z S, Shao L 2012 Chin. Phys. Lett. 29 054702

    [17]

    Zhang H Q, Lu H, Wang B, Wang X L 2011 Chin. Phys. Lett. 28 084703

    [18]

    Huang L P, Fan B C, Mei D J 2012 Theor. Appl. Mech. Lett. 2 012005

    [19]

    Du Y, Karniadakis G E 2000 Science 288 1230

    [20]

    Xu P, Choi K S 2007 Flow Control and MEMS (Springer, Berlin) p259

    [21]

    Huang L P, Fan B C, Dong G 2011 Acta Mech. Sin. 43 277 (in Chinese) [黄乐萍, 范宝春, 董刚 2011 力学学报 43 277]

    [22]

    Guo C F, Fan B C 2013 J. Ship Mech. 17 336 (in Chinese) [郭春风, 范宝春 2013 船舶力学 17 336]

    [23]

    Huang L P, Fan B C, Dong G 2010 Phys. Fluids 22 015103

    [24]

    Kravchenko A G, Choi H, Moin P 1993 Phys. Fluids 5 3307

  • [1]

    Kim J 2011 Phil. Trans. R. Soc. A 369 1396

    [2]

    Hasegawa H, Kasagi N 2011 J. Fluid Mech. 683 57

    [3]

    Deng B Q, Xu C X 2012 J. Fluid Mech. 710 234

    [4]

    Ma J, Jin W Y, Yi M, Li Y L 2008 Acta Phys. Sin. 59 6786 (in Chinese) [马军, 靳伍银, 易鸣, 李延龙 2008 物理学报 59 6786]

    [5]

    David G, Torsten S, Chan Y S 2012 Phys. Fluids 24 077102

    [6]

    Berger T W, Kim J, Lee C, Lim J 2000 Phys. Fluids 12 631

    [7]

    Lee C, Kim J 2002 Phys. Fluids 14 2523

    [8]

    Du Y, Symeonidis V, Karniadakis G E 2002 J. Fluid Mech. 457 1

    [9]

    Satake S, Kasagi N 1996 Int. J. Heat Fluid Flow 17 343

    [10]

    Pang J, Choi K S 2004 Phys. Fluids 16 35

    [11]

    Mei D J, Fan B C, Huang L P, Dong G 2010 Acta Phys. Sin. 59 6786 (in Chinese) [梅栋杰, 范宝春, 黄乐萍, 董刚 2010 物理学报 59 6777]

    [12]

    Mei D J, Fan B C, Chen Y H, Ye J F 2010 Acta Phys. Sin. 59 8335 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2010 物理学报 59 8335]

    [13]

    Mei D J, Fan B C, Chen Y H, Ye J F 2011 Acta Mech. Sin. 43 653 (in Chinese) [梅栋杰, 范宝春, 陈耀慧, 叶经方 2011 力学学报 43 653]

    [14]

    Zou L Y, Bai J S, Li B Y, Tan D W, Li P, Liu C L 2008 Chin. Phys. B 17 1034

    [15]

    Lin J Z, Li Jun, Zhang W F 2005 Chin. Phys. 14 2529

    [16]

    Yang Z X, Cui G X, Xu C X, Zhang Z S, Shao L 2012 Chin. Phys. Lett. 29 054702

    [17]

    Zhang H Q, Lu H, Wang B, Wang X L 2011 Chin. Phys. Lett. 28 084703

    [18]

    Huang L P, Fan B C, Mei D J 2012 Theor. Appl. Mech. Lett. 2 012005

    [19]

    Du Y, Karniadakis G E 2000 Science 288 1230

    [20]

    Xu P, Choi K S 2007 Flow Control and MEMS (Springer, Berlin) p259

    [21]

    Huang L P, Fan B C, Dong G 2011 Acta Mech. Sin. 43 277 (in Chinese) [黄乐萍, 范宝春, 董刚 2011 力学学报 43 277]

    [22]

    Guo C F, Fan B C 2013 J. Ship Mech. 17 336 (in Chinese) [郭春风, 范宝春 2013 船舶力学 17 336]

    [23]

    Huang L P, Fan B C, Dong G 2010 Phys. Fluids 22 015103

    [24]

    Kravchenko A G, Choi H, Moin P 1993 Phys. Fluids 5 3307

  • [1] 尹超男, 郑来运, 张超男, 李许龙, 赵秉新. 磁场、流体特性及几何参数对液态金属双扩散对流的影响. 物理学报, 2024, 73(11): 114401. doi: 10.7498/aps.73.20240089
    [2] 郭义丰, 王智彬, 贾莉斯, 莫松平, 陈颖. 液冷微通道内相变微胶囊的壁面温升抑制特性数值模拟. 物理学报, 2023, 72(10): 106501. doi: 10.7498/aps.72.20222400
    [3] 陈蒋力, 陈少强, 任峰, 胡海豹. 基于壁面压力反馈的圆柱绕流减阻智能控制. 物理学报, 2022, 71(8): 084701. doi: 10.7498/aps.71.20212171
    [4] 尹慧, 赵秉新. 倾角对方腔内热对流非线性演化与分岔的影响. 物理学报, 2021, 70(11): 114401. doi: 10.7498/aps.70.20201513
    [5] 郑志伟, 李大树, 仇性启, 崔运静. 中空液滴碰撞水平壁面数值分析. 物理学报, 2017, 66(1): 014704. doi: 10.7498/aps.66.014704
    [6] 杨雄, 程谋森, 王墨戈, 李小康. 螺旋波等离子体放电三维直接数值模拟. 物理学报, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [7] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [8] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [9] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响. 物理学报, 2015, 64(9): 094703. doi: 10.7498/aps.64.094703
    [10] 刘汉涛, 江山, 王艳华, 王婵娟, 李海桥. 溶解椭圆颗粒沉降的介观尺度数值模拟. 物理学报, 2015, 64(11): 114401. doi: 10.7498/aps.64.114401
    [11] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [12] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [13] 刘汉涛, 常建忠. 直接模拟中不同边界条件的实施及对沉降规律的影响. 物理学报, 2013, 62(8): 084401. doi: 10.7498/aps.62.084401
    [14] 张盟, 耿兴国, 张瑶, 王晓娜. 一维短沟槽复合准晶结构减阻效应及模拟分析. 物理学报, 2012, 61(19): 194702. doi: 10.7498/aps.61.194702
    [15] 仝志辉, 刘汉涛, 常建忠, 安康. 双颗粒在溶解条件下沉降的多相流动特性. 物理学报, 2012, 61(2): 024401. doi: 10.7498/aps.61.024401
    [16] 陈林, 唐登斌, Chaoqun Liu. 转捩边界层中流向条纹的新特性. 物理学报, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [17] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [18] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [19] 仝志辉. 热对流条件下固液密度比对颗粒沉降运动影响的直接数值模拟. 物理学报, 2010, 59(3): 1884-1889. doi: 10.7498/aps.59.1884
    [20] 刘汉涛, 仝志辉, 安康, 马理强. 溶解与热对流对固体颗粒运动影响的直接数值模拟. 物理学报, 2009, 58(9): 6369-6375. doi: 10.7498/aps.58.6369
计量
  • 文章访问数:  6037
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-03
  • 修回日期:  2013-11-20
  • 刊出日期:  2014-03-05

/

返回文章
返回