搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液冷微通道内相变微胶囊的壁面温升抑制特性数值模拟

郭义丰 王智彬 贾莉斯 莫松平 陈颖

引用本文:
Citation:

液冷微通道内相变微胶囊的壁面温升抑制特性数值模拟

郭义丰, 王智彬, 贾莉斯, 莫松平, 陈颖

Numerical simulation of inhibition characteristics of wall temperature rise of phase change microcapsule in liquid-cooled microchannel

Guo Yi-Feng, Wang Zhi-Bin, Jia Li-Si, Mo Song-Ping, Chen Ying
PDF
HTML
导出引用
  • 相变微胶囊悬浮液是一种新型的蓄热-传热功能流体, 目前对相变微胶囊与基液流固传递作用认识的欠缺, 导致宏观上对悬浮液流动传热性能的研究结果存在较大的差异. 为此, 本文采用任意拉格朗日-欧拉方法模拟相变微胶囊在液冷微通道内流固作用下的流动传热特性, 对比普通颗粒及相变胶囊对液冷微通道壁面温升的抑制作用, 考察胶囊位置、形状及数量对壁面温升抑制的影响. 结果表明: 胶囊及颗粒均对它们上游区域的壁面温升产生抑制作用, 而胶囊的相变使得抑制效果更加明显; 胶囊越靠近壁面自旋运动越快, 越有利于流体与壁面的换热, 对壁面温升抑制效果越强, 尤其是靠近受热面时; 相比椭圆形胶囊, 圆形胶囊自旋运动更激烈, 对壁面温升抑制效果更优; 随着加热区内胶囊数的增加, 最大抑制效果在逐渐提升.
    Phase change microcapsule suspension is a new type of heat-storage and heat-transfer functional fluid. Owing to the lack of understanding of flow-solid interaction, there exists a difference in research result of the heat transfer performance of suspension fluid. Therefore, the arbitrary Lagrangian-Euler method is used to simulate the flow-solid transfer characteristics of phase-change microcapsules in the liquid-cooled microchannel. Furthermore, the comparison of heat-transfer between particle and phase-change capsules is conducted. The influences of the position, shape, and number of capsules on the inhibition of the wall temperature rise are investigated. The results show that the wall-temperature-rise inhibition mainly occurs in the upstream area of the capsules. The phase change of capsules can reduce the wall temperature rise. On the other hand, the spin movement is faster when the capsule is closer to the wall, and the heat transfer is enhanced. As a result, the inhibitory effect on the wall temperature rise becomes stronger, especially near the heating surface. The circular capsules spin movement is faster and the inhibition performance is better than the ellipse. With the capsules number increasing, the wall temperature inhibition effect also gradually strengthens.
      通信作者: 王智彬, wangzhibin@gdut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U20A201020)和广东省自然科学基金(批准号: 2019A1515012119)资助的课题.
      Corresponding author: Wang Zhi-Bin, wangzhibin@gdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U20A201020) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2019A1515012119).
    [1]

    Zhang Y, Ding B, Zhao D Y, Zhao S, Gong L 2023 Int. J. Heat Mass Transf. 201 123566Google Scholar

    [2]

    Xiu L 2019 IEEE Solid-State Circuits Magazine 11 39Google Scholar

    [3]

    Zhang Q, Deng K, Wilkens L, Reith H, Nielsch K 2022 Nat. Electron. 5 333Google Scholar

    [4]

    Ding B, Feng W C, Fang J, Li S Z, Gong L 2022 Int. J. Heat Mass Transf. 184 122272Google Scholar

    [5]

    Ding B, Feng W C, Mu M F, Gong L, Li L 2023 Int. J. Heat Mass Transf. 203 123773Google Scholar

    [6]

    黄豪杰, 钱吉裕, 魏涛 2022 中国电子科学研究院学报 17 842Google Scholar

    Huang H J, Qian J Y, Wei T 2022 J. Chin. Acad. Electron. Sci. 17 842Google Scholar

    [7]

    Vinoth R, Sachuthananthan B 2021 Int. Commun. Heat Mass Transf. 123 105194Google Scholar

    [8]

    Hou T, Chen Y 2020 Chem. Eng. Process 153 107931Google Scholar

    [9]

    Zhang F, Wu B, Du B 2022 Int. J. Therm. Sci. 172 107357Google Scholar

    [10]

    Alnaimat F, Varghese D, Mathew B 2022 Int. J. Thermo. fluids 16 100213Google Scholar

    [11]

    Roumpea E, Kovalchuk N M, Chinaud M, Nowak E, Simmons M J H, Angeli P 2019 Chem. Eng. Sci. 195 507Google Scholar

    [12]

    Liang C P, Ture F, Dai Y J, Wang R Z, Ge T S 2021 Energy Build. 231 110622Google Scholar

    [13]

    Chen Z, Qian P, Huang Z, Zhang W, Liu M 2023 Int. J. Therm. Sci. 183 107840Google Scholar

    [14]

    Sarafraz M M, Arjomandi M 2018 Appl. Therm. Eng. 137 700Google Scholar

    [15]

    Martínez V A, Vasco D A, García-Herrera C M, Ortega-Aguilera R 2019 Appl. Therm. Eng. 161 114130Google Scholar

    [16]

    刘中淼, 孙其诚, 宋世雄, 史庆藩 2014 物理学报 63 034702Google Scholar

    Liu Z M, Sun Q C, Song S X, Shi Q P 2014 Acta Phys. Sin. 63 034702Google Scholar

    [17]

    Hetsroni G, Mosyak A, Pogrebnyak E 2002 Int. J. Multiph. Flow 28 1873Google Scholar

    [18]

    Hashemi Z, Abouali O, Kamali R 2013 Int. J. Heat Mass Transf. 65 235Google Scholar

    [19]

    Liu C, Tang S, Dong Y 2017 Appl. Math Mech. Engl. 38 1149Google Scholar

    [20]

    段总样, 赵云华, 徐璋 2021 力学学报 53 2656Google Scholar

    Duan Z Y, Zhao Y H, Xu Z 2021 Chin. J. Theor. Appl. Mech. 53 2656Google Scholar

    [21]

    赵维维 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhao W W 2019 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [22]

    崔智文, 王泽, 蒋新宇, 赵立豪 2022 力学进展 52 623Google Scholar

    Cui Z W, Wang Z, Jiang X Y, Zhao L H 2022 Adv. Mech. 52 623Google Scholar

    [23]

    Rao Y, Dammel F, Stephan P, Lin G 2007 Heat Mass Transf. 44 175Google Scholar

    [24]

    杨杰, 王艳 2020 农业装备与车辆工程 58 141Google Scholar

    Yang J, Wang Y 2020 Agric. Equip. Veh. Eng. 58 141Google Scholar

  • 图 1  计算模型示意图

    Fig. 1.  Schematics of computational model.

    图 2  网格示意图

    Fig. 2.  Grid diagram.

    图 3  网格独立性验证 (a)平均Nu数; (b)局部Nu

    Fig. 3.  Grid sensitivity tests: (a) Average Nu number; (b) local Nu number.

    图 4  模型验证

    Fig. 4.  Validation of numerical model.

    图 5  水、普通颗粒和相变胶囊的对比 (a) 温度云图; (b) 速度云图

    Fig. 5.  Comparison in water, particle and phase change capsules: (a) Temperature field; (b) velocity field.

    图 6  (a) 颗粒迁移及自旋; (b) 流体温度及壁面温度; (c) 流体温度局部放大图; (d) 壁面温度局部放大图

    Fig. 6.  (a) Particle migration and spin; (b) temperature of fluid and wall; (c) local temperature of wall; (d) local temperature of fluid

    图 7  颗粒在不同时刻的$ \Delta {T}_{{\rm{w}}} $$ \Delta {T}_{{\rm{f}}} $ (a) 1.7 ms; (b) 2.7 ms; (c) 6.6 ms

    Fig. 7.  Temperature difference in different time: (a) 1.7 ms; (b) 2.7 ms; (c) 6.6 ms.

    图 8  相变胶囊的相变过程 (a) 1.85 ms; (b) 2.37 ms; (c) 2.92 ms; (d) 3.45 ms; (e) 3.99 ms; (f) 5.07 ms; (g) 6.43 ms; (h) 7.24 ms

    Fig. 8.  Phase change process of the phase change capsule: (a) 1.85 ms; (b) 2.37 ms; (c) 2.92 ms; (d) 3.45 ms; (e) 3.99 ms; (f) 5.07 ms; (g) 6.43 ms; (h) 7.24 ms.

    图 9  Re对胶囊迁移和自旋的影响 (a) 迁移轨迹; (b) 自旋周期

    Fig. 9.  Effect of Re on capsule migration and spin: (a) Migration trajectory; (b) period of spin.

    图 10  不同Re$ \Delta {T}_{{\rm{w}}} $的影响 (a) 1.7 ms时$ \Delta {T}_{{\rm{w}}} $; (b) 2.7 ms时$ \Delta {T}_{{\rm{w}}} $; (c) 6.6 ms时$ \Delta {T}_{{\rm{w}}} $

    Fig. 10.  Effect of different Re on $ \Delta {T}_{{\rm{w}}} $: (a) $ \Delta $Tw in 1.7 ms; (b) $ \Delta $Tw in 2.7 ms; (c) $ \Delta $Tw in 6.6 ms.

    图 11  胶囊不同时刻的温度云图

    Fig. 11.  Temperature cloud map of capsules at different times.

    图 12  胶囊位置的影响 (a) 胶囊在1.7 ms时$ \Delta {T}_{{\rm{w}}} $; (b) 胶囊在2.7 ms时$ \Delta {T}_{{\rm{w}}} $; (c) 胶囊在6.6 ms时$ \Delta {T}_{{\rm{w}}} $; (d) 胶囊迁移及自旋

    Fig. 12.  Effect of microcapsule position: (a) $ \Delta $Tw in 1.7 ms; (b) $ {\Delta } $Tw in 2.7 ms; (c) $ \Delta $Tw in 6.6 ms; (d) phase change microcapsule migration and spin.

    图 13  不同长径比胶囊的温度云图

    Fig. 13.  Temperature fields of microcapsule with different draw ratio.

    图 14  胶囊形状的影响 (a) 最大影响温度$ \Delta {T}_{{\rm{w}}} $; (b) 最大影响范围s

    Fig. 14.  Effect of capsule shape: (a) Maximum influenced of $ \Delta {T}_{{\rm{w}}} $; (b) maximum influenced of s

    图 15  不同长径比胶囊的迁移及自旋 (a) 迁移及自旋轨迹; (b) 自旋周期

    Fig. 15.  Migration and spin of capsules with different aspect ratios: (a) Migration and spin trajectories; (b) period of spin.

    图 16  不同数量胶囊初始位置及在4.1 ms时的分布

    Fig. 16.  Initial location and distribution in 4.1 ms of multiple microcapsules.

    图 17  多胶囊的最大影响温度$ \Delta {T}_{{\rm{w}}} $(a)和影响范围s (b)

    Fig. 17.  Maximum influenced of $ \Delta {T}_{{\rm{w}}} $ (a) and maximum influenced length s (b) for multicapsules.

    表 1  基液及相变胶囊、普通颗粒的物性参数

    Table 1.  Thermophysical properties of the base fluid and particle.

    材料ρ/(kg·m–3)Cp/(J·kg–1·K–1)k/(W·m–1·K–1)μ/(103 Pa·s)hsf/(kJ·kg–1)
    998.241890.5991.005
    相变胶囊1094(1)式0.1644241
    普通颗粒10941893.040.1644
    下载: 导出CSV
  • [1]

    Zhang Y, Ding B, Zhao D Y, Zhao S, Gong L 2023 Int. J. Heat Mass Transf. 201 123566Google Scholar

    [2]

    Xiu L 2019 IEEE Solid-State Circuits Magazine 11 39Google Scholar

    [3]

    Zhang Q, Deng K, Wilkens L, Reith H, Nielsch K 2022 Nat. Electron. 5 333Google Scholar

    [4]

    Ding B, Feng W C, Fang J, Li S Z, Gong L 2022 Int. J. Heat Mass Transf. 184 122272Google Scholar

    [5]

    Ding B, Feng W C, Mu M F, Gong L, Li L 2023 Int. J. Heat Mass Transf. 203 123773Google Scholar

    [6]

    黄豪杰, 钱吉裕, 魏涛 2022 中国电子科学研究院学报 17 842Google Scholar

    Huang H J, Qian J Y, Wei T 2022 J. Chin. Acad. Electron. Sci. 17 842Google Scholar

    [7]

    Vinoth R, Sachuthananthan B 2021 Int. Commun. Heat Mass Transf. 123 105194Google Scholar

    [8]

    Hou T, Chen Y 2020 Chem. Eng. Process 153 107931Google Scholar

    [9]

    Zhang F, Wu B, Du B 2022 Int. J. Therm. Sci. 172 107357Google Scholar

    [10]

    Alnaimat F, Varghese D, Mathew B 2022 Int. J. Thermo. fluids 16 100213Google Scholar

    [11]

    Roumpea E, Kovalchuk N M, Chinaud M, Nowak E, Simmons M J H, Angeli P 2019 Chem. Eng. Sci. 195 507Google Scholar

    [12]

    Liang C P, Ture F, Dai Y J, Wang R Z, Ge T S 2021 Energy Build. 231 110622Google Scholar

    [13]

    Chen Z, Qian P, Huang Z, Zhang W, Liu M 2023 Int. J. Therm. Sci. 183 107840Google Scholar

    [14]

    Sarafraz M M, Arjomandi M 2018 Appl. Therm. Eng. 137 700Google Scholar

    [15]

    Martínez V A, Vasco D A, García-Herrera C M, Ortega-Aguilera R 2019 Appl. Therm. Eng. 161 114130Google Scholar

    [16]

    刘中淼, 孙其诚, 宋世雄, 史庆藩 2014 物理学报 63 034702Google Scholar

    Liu Z M, Sun Q C, Song S X, Shi Q P 2014 Acta Phys. Sin. 63 034702Google Scholar

    [17]

    Hetsroni G, Mosyak A, Pogrebnyak E 2002 Int. J. Multiph. Flow 28 1873Google Scholar

    [18]

    Hashemi Z, Abouali O, Kamali R 2013 Int. J. Heat Mass Transf. 65 235Google Scholar

    [19]

    Liu C, Tang S, Dong Y 2017 Appl. Math Mech. Engl. 38 1149Google Scholar

    [20]

    段总样, 赵云华, 徐璋 2021 力学学报 53 2656Google Scholar

    Duan Z Y, Zhao Y H, Xu Z 2021 Chin. J. Theor. Appl. Mech. 53 2656Google Scholar

    [21]

    赵维维 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Zhao W W 2019 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [22]

    崔智文, 王泽, 蒋新宇, 赵立豪 2022 力学进展 52 623Google Scholar

    Cui Z W, Wang Z, Jiang X Y, Zhao L H 2022 Adv. Mech. 52 623Google Scholar

    [23]

    Rao Y, Dammel F, Stephan P, Lin G 2007 Heat Mass Transf. 44 175Google Scholar

    [24]

    杨杰, 王艳 2020 农业装备与车辆工程 58 141Google Scholar

    Yang J, Wang Y 2020 Agric. Equip. Veh. Eng. 58 141Google Scholar

  • [1] 陈龙, 王迪雅, 陈俊宇, 段萍, 杨叶慧, 檀聪琦. 霍尔推力器放电通道低频振荡特性及抑制方法. 物理学报, 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [2] 和琨, 郭秀娅, 张小盈, 汪垒. 方腔内电场强化固液相变传热. 物理学报, 2021, 70(14): 149101. doi: 10.7498/aps.70.20202127
    [3] 赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪. 液氮滴撞击壁面相变行为的数值研究. 物理学报, 2019, 68(24): 244401. doi: 10.7498/aps.68.20190945
    [4] 张龙艳, 徐进良, 雷俊鹏. 尺寸效应对微通道内固液界面温度边界的影响. 物理学报, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [5] 闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭. 仿生微流控的发展与应用. 物理学报, 2016, 65(17): 178301. doi: 10.7498/aps.65.178301
    [6] 刘虎, 强洪夫, 陈福振, 韩亚伟, 范树佳. 一种新型光滑粒子动力学固壁边界施加模型. 物理学报, 2015, 64(9): 094701. doi: 10.7498/aps.64.094701
    [7] 曾果, 李兴源, 刘天琪, 赵睿. 同时抑制低频振荡和次同步振荡的多通道广域自适应阻尼控制. 物理学报, 2014, 63(22): 228801. doi: 10.7498/aps.63.228801
    [8] 刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩. 改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟. 物理学报, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [9] 王小伍, 徐海红. 多元醇二元体系固-固相变机理的研究. 物理学报, 2014, 63(13): 136501. doi: 10.7498/aps.63.136501
    [10] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [11] 闫寒, 张文明, 胡开明, 刘岩, 孟光. 随机粗糙微通道内流动特性研究. 物理学报, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [12] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [13] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [14] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟. 物理学报, 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [15] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [16] 危卫, 鲁录义, 顾兆林. 风沙运动的电场-流场耦合模型及气固两相流数值模拟. 物理学报, 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [17] 王小伍, 徐海红. 多元醇固—固相变机理的研究. 物理学报, 2011, 60(3): 030507. doi: 10.7498/aps.60.030507
    [18] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究. 物理学报, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [19] 薛小波, 姚朝晖, 何 枫. 信息保存方法在微尺度变温流场中的应用研究. 物理学报, 2006, 55(3): 1276-1282. doi: 10.7498/aps.55.1276
    [20] 汪 洪, 娄 平, 庄永河. 由流方程求解非零温条件下t-J模型能谱. 物理学报, 2005, 54(8): 3764-3767. doi: 10.7498/aps.54.3764
计量
  • 文章访问数:  3450
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-16
  • 修回日期:  2023-03-07
  • 上网日期:  2023-03-28
  • 刊出日期:  2023-05-20

/

返回文章
返回