搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

槽道湍流的展向振荡电磁力壁面减阻

梅栋杰 范宝春 黄乐萍 董刚

引用本文:
Citation:

槽道湍流的展向振荡电磁力壁面减阻

梅栋杰, 范宝春, 黄乐萍, 董刚

Drag reduction in turbulent channel flow by spanwise oscillating Lorentz force

Mei Dong-Jie, Fan Bao-Chun, Huang Le-Ping, Dong Gang
PDF
导出引用
  • 采用直接数值模拟方法,对槽道湍流的展向振荡电磁力的减阻效果和减阻机理进行了研究,讨论了电磁力强度和振荡频率对湍流猝发事件以及壁面减阻率的影响.结果表明,电磁力强度或振荡频率变化时,湍流猝发频率和猝发强度的变化趋势是相反的,所以存在最优参数使得减阻效果最好.等价壁面展向速度可以很好地描述电磁力强度和振荡频率的变化对减阻效果的综合效应.
    Direct numerical simulation (DNS) of a turbulent channel flow is carried out to investigate the effect and mechanism of using spanwise oscillating Lorentz force to reduce boundary layer friction.We discussed the influence of Lorentz force intensity St and oscillating frequency T+ on the drag reduction effect and turbulent burst events. The results suggest the varying tendencies with St or T+ of the frequency of the turbulent bursts events are opposite to the intensity of the turbulent bursts events,and there exists an optimal parameter to achieve the largest amount of drag reduction.The composite effect of St and T+ can be well described by the equivalent spanwise wall velocity W+.
    [1]

    Li G, Li H M, Li Y M, Nie C Q, Xu Y J, Zhang Y, Zhu J Q 2009 Acta Phys. Sin.58 4026 (in Chinese)[李 钢、李汉明、李轶明、聂超群、徐燕骥、张 翼、朱俊强 2009 物理学报 58 4026]

    [2]

    Park H, Lee D, Jeon W P, Hahn S, Kim J, Kim J, Choi J, Choi H 2006 J. Fluid Mech. 563 389

    [3]

    Itoh M, Tamano S, Yokota K, Taniguchi S 2006 J. Turbulence 7 1

    [4]

    Liu W D, Qiu X M, Sun A P, Tang D L, Zeng X J 2007 Acta Phys. Sin. 56 186 (in Chinese) [刘万东、邱孝明、孙爱萍、唐德礼、曾学军 2007 物理学报 56 186]

    [5]

    Gong B Z, Zhang B J 2009 Acta Phys. Sin. 58 1504 (in Chinese) [龚博致、张秉坚 2009 物理学报 58 1504]

    [6]

    Chen Y H, Fan B C, Chen Z H, Li H Z 2009 Sci. China Ser. G 52 1364

    [7]

    Zhang H, Fan B C, Chen Z H 2009 Fluid Dyn. Res. 41 045507

    [8]

    Zhang H, Fan B C, Chen Z H, Dong G, Zhou B M 2008 Chin. Sci. Bull. 53 2946

    [9]

    Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 648 (in Chinese) [陈耀慧、范宝春、陈志华、周本谋 2008 物理学报 57 648]

    [10]

    Chen Z H, Fan B C, Zhou B M, Li H Z 2007 Chin. Phys. 16 1077

    [11]

    Henoch C, Stace J 1995 Phys. Fluids 7 1371

    [12]

    Crawford C H , Karniadakis G E 1997 Phys. Fluids 9 788

    [13]

    Nosenchuck D M, Brown G L 1993 Near-Wall Turbulent Flows (New York: Elsevier Science Publishers BV) p689

    [14]

    Bandyopadhyay P R, Castano J M 1996 Proceedings of the Forum on Control of Transitional and Turbulent Flows,Fluids Engineering Division Conference San Diego, American, July 7—11,1996 p53

    [15]

    Pang J, Choi K S 2004 Phys. Fluids 16 35

    [16]

    Breuer K S, Park J, Henoch C 2004 Phys. Fluids 16 897

    [17]

    Berger T W, Kim J, Lee C, Lim J 2000 Phys. Fluids 12 631

    [18]

    Lee C, Kim J 2002 Phys. Fluids 14 2523

    [19]

    Du Y Q, Symeonidis V, Karniadakis G E 2002 J. Fluid Mech. 457 1

    [20]

    Satake S, Kasagi N 1996 Int. J. Heat Fluid Flow 17 343

    [21]

    Lee C B, Wu J Z 2008 Appl. Mech. Rew. 61 030802

    [22]

    Canuto C, Hussaini M Y, Quarteroni A, Zang T A 1988 Spectral Methods in Fluid Dynamics (New York: Springer-Verlag) p201

    [23]

    Kim J, Moin P, Moser R 1987 J. Fluid Mech. 177 133

    [24]

    Kim J 1983 Phys. Fluids 26 2088

  • [1]

    Li G, Li H M, Li Y M, Nie C Q, Xu Y J, Zhang Y, Zhu J Q 2009 Acta Phys. Sin.58 4026 (in Chinese)[李 钢、李汉明、李轶明、聂超群、徐燕骥、张 翼、朱俊强 2009 物理学报 58 4026]

    [2]

    Park H, Lee D, Jeon W P, Hahn S, Kim J, Kim J, Choi J, Choi H 2006 J. Fluid Mech. 563 389

    [3]

    Itoh M, Tamano S, Yokota K, Taniguchi S 2006 J. Turbulence 7 1

    [4]

    Liu W D, Qiu X M, Sun A P, Tang D L, Zeng X J 2007 Acta Phys. Sin. 56 186 (in Chinese) [刘万东、邱孝明、孙爱萍、唐德礼、曾学军 2007 物理学报 56 186]

    [5]

    Gong B Z, Zhang B J 2009 Acta Phys. Sin. 58 1504 (in Chinese) [龚博致、张秉坚 2009 物理学报 58 1504]

    [6]

    Chen Y H, Fan B C, Chen Z H, Li H Z 2009 Sci. China Ser. G 52 1364

    [7]

    Zhang H, Fan B C, Chen Z H 2009 Fluid Dyn. Res. 41 045507

    [8]

    Zhang H, Fan B C, Chen Z H, Dong G, Zhou B M 2008 Chin. Sci. Bull. 53 2946

    [9]

    Chen Y H, Fan B C, Chen Z H, Zhou B M 2008 Acta Phys. Sin. 57 648 (in Chinese) [陈耀慧、范宝春、陈志华、周本谋 2008 物理学报 57 648]

    [10]

    Chen Z H, Fan B C, Zhou B M, Li H Z 2007 Chin. Phys. 16 1077

    [11]

    Henoch C, Stace J 1995 Phys. Fluids 7 1371

    [12]

    Crawford C H , Karniadakis G E 1997 Phys. Fluids 9 788

    [13]

    Nosenchuck D M, Brown G L 1993 Near-Wall Turbulent Flows (New York: Elsevier Science Publishers BV) p689

    [14]

    Bandyopadhyay P R, Castano J M 1996 Proceedings of the Forum on Control of Transitional and Turbulent Flows,Fluids Engineering Division Conference San Diego, American, July 7—11,1996 p53

    [15]

    Pang J, Choi K S 2004 Phys. Fluids 16 35

    [16]

    Breuer K S, Park J, Henoch C 2004 Phys. Fluids 16 897

    [17]

    Berger T W, Kim J, Lee C, Lim J 2000 Phys. Fluids 12 631

    [18]

    Lee C, Kim J 2002 Phys. Fluids 14 2523

    [19]

    Du Y Q, Symeonidis V, Karniadakis G E 2002 J. Fluid Mech. 457 1

    [20]

    Satake S, Kasagi N 1996 Int. J. Heat Fluid Flow 17 343

    [21]

    Lee C B, Wu J Z 2008 Appl. Mech. Rew. 61 030802

    [22]

    Canuto C, Hussaini M Y, Quarteroni A, Zang T A 1988 Spectral Methods in Fluid Dynamics (New York: Springer-Verlag) p201

    [23]

    Kim J, Moin P, Moser R 1987 J. Fluid Mech. 177 133

    [24]

    Kim J 1983 Phys. Fluids 26 2088

  • [1] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟. 物理学报, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [2] 李山, 姜楠, 杨绍琼. 正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究. 物理学报, 2019, 68(7): 074702. doi: 10.7498/aps.68.20181875
    [3] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性. 物理学报, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [4] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [5] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [6] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [7] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响. 物理学报, 2015, 64(9): 094703. doi: 10.7498/aps.64.094703
    [8] 李小磊, 秦长剑, 张会臣. 激光空泡在文丘里管中运动的动力学特性. 物理学报, 2014, 63(5): 054707. doi: 10.7498/aps.63.054707
    [9] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [10] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 激波与层流/湍流边界层相互作用实验研究. 物理学报, 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [11] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [12] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究. 物理学报, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [13] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性. 物理学报, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [14] 季小玲. 部分相干平顶光束通过湍流大气传输的等效曲率半径. 物理学报, 2010, 59(6): 3953-3958. doi: 10.7498/aps.59.3953
    [15] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [16] 高鹏, 耿兴国, 欧修龙, 薛文辉. 人工构建二维准晶复合结构的减阻特性研究. 物理学报, 2009, 58(1): 421-426. doi: 10.7498/aps.58.421
    [17] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [18] 桑海波, 贺凯芬. 噪声在外加周期信号控制强湍中的作用研究. 物理学报, 2008, 57(11): 6830-6836. doi: 10.7498/aps.57.6830
    [19] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制. 物理学报, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [20] 张旭, 沈柯. 环形腔中激光振荡输出的横向斑图及向光学湍流的转变. 物理学报, 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
计量
  • 文章访问数:  6242
  • PDF下载量:  755
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-04
  • 修回日期:  2009-12-24
  • 刊出日期:  2010-05-05

槽道湍流的展向振荡电磁力壁面减阻

  • 1. 南京理工大学,瞬态物理重点实验室,南京 210094

摘要: 采用直接数值模拟方法,对槽道湍流的展向振荡电磁力的减阻效果和减阻机理进行了研究,讨论了电磁力强度和振荡频率对湍流猝发事件以及壁面减阻率的影响.结果表明,电磁力强度或振荡频率变化时,湍流猝发频率和猝发强度的变化趋势是相反的,所以存在最优参数使得减阻效果最好.等价壁面展向速度可以很好地描述电磁力强度和振荡频率的变化对减阻效果的综合效应.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回