搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

横向磁场作用下Taylor-Couette湍流流动的大涡模拟

董帅 纪祥勇 李春曦

引用本文:
Citation:

横向磁场作用下Taylor-Couette湍流流动的大涡模拟

董帅, 纪祥勇, 李春曦

Large eddy simulation of Taylor-Couette turbulent flow under transverse magnetic field

Dong Shuai, Ji Xiang-Yong, Li Chun-Xi
PDF
HTML
导出引用
  • 采用大涡模拟方法对横向磁场作用下导电流体Taylor-Couette湍流流动进行数值模拟, 以研究其运动规律. 计算模型为无限长度, 半径比为1/2. 雷诺数分别选取为3000和5000, 磁场加载方式为全局磁场, 哈特曼数取值0—50. 对磁场作用下泰勒涡的演化过程、速度分布和湍动能分布进行分析, 并与轴向磁场作用下泰勒涡演化过程进行对比. 结果表明: 磁场对流场有显著的抑制作用, 扭曲的泰勒涡在横向磁场的作用下破裂成小尺度涡结构, 并沿磁场方向排列; 在外圆筒和垂直于磁场方向的区域, 磁场抑制效果较强; 随着雷诺数的增加, 磁场抑制效果减弱, 在流场不同区域, 流动呈现出不同的特点. 与轴向磁场相比, 横向磁场对流场的抑制效果较弱, 流场分布呈现出明显的各向异性.
    By the large eddy simulation method, the turbulent Taylor-Couette flow of conducting fluid under a homogenous transverse magnetic field is investigated through using the computational fluid dynamic software ANSYS Fluent 17.0. The flow is confined between two infinitely long cylinders, thus a periodic boundary condition is imposed in the axial direction. The inner cylinder rotates while the outer one is at rest, and their radius ratio is 1/2. Two Reynolds numbers of 3000 and 5000 are considered in the simulations, and the Hartmann number is varied from 0 to 50. In the present study, we assume a lower magnetic Reynolds number $Re_{\rm m} \ll 1$, i.e., the influence of the induced magnetic field on the flow is negligible in comparison with the imposed magnetic field. The evolution of Taylor vortices, velocity profile of mean flow, and turbulent kinetic energy distribution under the transverse magnetic field are analyzed and compared with the results of the axial magnetic field counterpart. It shows that the imposed magnetic field has a significant damping effect on the Taylor-Couette flow. The twisted Taylor vortices break into small-scale vortex structures under the transverse magnetic field and they arrange themselves along the magnetic field. The fluctuations which are perpendicular to the magnetic field are suppressed effectively, while the one which is parallel to the magnetic field is nearly uninfluenced, resulting in quasi-two-dimensional elongated structure in the flow field. As anticipated, in a sufficiently strong magnetic field, the turbulent Taylor-Couette flow may eventually decay to a Couette laminar flow. In the outer cylinder and the area perpendicular to the direction of the magnetic field, the suppression effect is even stronger than those in any other places and fewer vortices are observed in the simulations. The turbulent kinetic energy is transferred firstly from large eddies to intermediate eddies, then to small eddies, and finally dissipated due to the viscous and Joule effect. As the Reynolds number increases, the suppression effect of the magnetic field weakens, and the flow behaves divergently in different areas of the apparatus. Compared with the axial magnetic field, the transverse magnetic field has a weak suppression effect on the flow field, and the profiles of related variables are obviously anisotropic.
      通信作者: 李春曦, Leechunxi@163.com
    • 基金项目: 国家自然科学基金(批准号: 12172129, 11302076)、河北省自然科学基金(批准号: A2014502047)和中央高校基本科研业务费专项资金(批准号: 2021MS081)资助的课题
      Corresponding author: Li Chun-Xi, Leechunxi@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12172129, 11302076), the Natural Science Foundation of Hebei Province, China (Grant No. A2014502047), and the Fundamental Research Fund for the Central Universities, China (Grant No. 2021MS081)
    [1]

    Taylor G I 1923 Philos. Trans. R. Soc. A 223 289Google Scholar

    [2]

    Andereck C D, Liu S S, Swinney H L 1986 J. Fluid Mech. 164 155Google Scholar

    [3]

    叶立, 蔡小舒, 童正明 2012 化工进展 31 1878

    Ye L, Cai X S, Tong Z M 2012 Chem. Ind. Eng. Prog. 31 1878

    [4]

    Dutta P K, Ray A K 2004 Chem. Eng. Sci. 59 5249Google Scholar

    [5]

    Collet Y, Magotte O, Van den Bogaert N, Rolinsky R, Loix F, Jacot M, Regnier V, Marie J M, Dupret F 2012 J. Cryst. Growth 360 18Google Scholar

    [6]

    Li Y, Ruan D, Imaishi N, Wu S, Peng L, Zeng D 2003 Int. J. Heat Mass Transfer 46 2887Google Scholar

    [7]

    Gao X, Kong B, Vigil R D 2015 Bioresour. Technol. 198 283Google Scholar

    [8]

    Gil L V G, Singh H, Da Silva J D S, Santos D P D, Suazo C A T 2020 Biochem. Eng. J. 162 107710Google Scholar

    [9]

    Kang B K, Song Y H, Park W K, Kwag S H, Lim B S, Kwon S B, Yang W S, Yoon D H 2017 J. Eur. Ceram. Soc. 37 3673Google Scholar

    [10]

    Serov A F, Nazarov A D, Mamonov V N, Terekhov V I 2019 Appl. Energy 251 113362Google Scholar

    [11]

    Donnelly R J, Ozima M 1962 Proc. R. Soc. A 266 272Google Scholar

    [12]

    Tagawa T, Kaneda M 2005 J. Phys.: Conf. Ser. 14 007Google Scholar

    [13]

    Leng X Y, Kolesnikov Y B, Krasnov D, Li B W 2018 Phys. Fluids 30 015107Google Scholar

    [14]

    Leng X Y, Yu Y, Li B W 2014 Comput. Fluids 105 16Google Scholar

    [15]

    Zhao Y R, Tao J J, Zikanov O 2014 Phys. Rev. E 89 33002Google Scholar

    [16]

    Kikura H, Aritomi M, Takeda Y 2005 J. Magn. Magn. Mater. 289 342Google Scholar

    [17]

    Davidson P A 1995 J. Fluid Mech. 299 153Google Scholar

    [18]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2020 物理学报 69 134702Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fu Y A X 2020 Acta Phys. Sin. 69 134702Google Scholar

    [19]

    Kakarantzas S C, Benos L T, Sarris I E, Knaepenc B, Grecos A P, Vlachos N S 2017 Int. J. Heat Fluid Flow 65 342Google Scholar

    [20]

    Dong S 2007 J. Fluid Mech. 587 373Google Scholar

    [21]

    Cheng W, Pullin D I, Samtaney R 2020 J. Fluid Mech. 890 17Google Scholar

    [22]

    赵斌娟, 谢昀彤, 廖文言, 韩璐遥, 付燕霞, 黄忠富 2020 机械工程学报 56 216Google Scholar

    Zhao B J, Xie Y T, Liao W Y, Han L Y, Fu Y X, Huang Z F 2020 J. Mech. Eng. 56 216Google Scholar

    [23]

    杜珩, 阙夏, 刘难生 2014 中国科学技术大学学报 44 761Google Scholar

    Du H, Que X, Liu N S 2014 J. Univ. Sci. Technol. China 44 761Google Scholar

    [24]

    Leng X Y, Krasnov D, Kolesnikov Y, Li B W 2017 Magnetohydrodynamics 53 159Google Scholar

  • 图 1  物理模型

    Fig. 1.  Physical model.

    图 2  平均周向速度分布曲线 (a) Re = 3000; (b) Re = 5000

    Fig. 2.  Distribution of mean azimuthal velocity: (a) Re = 3000; (b) Re = 5000.

    图 3  平均角动量分布曲线 (a) Re = 3000; (b) Re = 5000

    Fig. 3.  Distribution of mean angular momentum (a) Re = 3000; (b) Re = 5000.

    图 4  平均速度u+分布 (a) Re = 3000; (b) Re = 5000

    Fig. 4.  Distribution of mean velocity profile u+: (a) Re = 3000; (b) Re = 5000.

    图 5  Q = 2000时泰勒涡的演化过程图 (a) Re = 3000; (b) Re = 5000

    Fig. 5.  Diagram of Taylor vortex evolution process with Q = 2000: (a) Re = 3000; (b) Re = 5000.

    图 6  Re = 3000工况下子午面平均速度矢量图 (a) x = 0; (b) y = 0

    Fig. 6.  Diagram of mean velocity in the meridian plane at Re = 3000: (a) x = 0; (b) y = 0.

    图 7  Re = 5000工况下子午面平均速度矢量图 (a) x = 0; (b) y = 0

    Fig. 7.  Diagram of mean velocity in the meridian plane at Re = 5000: (a) x = 0; (b) y = 0.

    图 8  全流场周向速度分布曲线 (a) Re = 3000; (b) Re = 5000

    Fig. 8.  Distribution of the azimuthal velocity in the whole flow field: (a) Re = 3000; (b) Re = 5000.

    图 9  x = 0子午面周向速度分布曲线 (a) Re = 3000; (b) Re = 5000

    Fig. 9.  Distribution of the azimuthal velocity in the vertical plane of x = 0: (a) Re = 3000; (b) Re = 5000.

    图 10  y = 0子午面周向速度分布曲线 (a) Re = 3000; (b) Re = 5000

    Fig. 10.  Distribution of the azimuthal velocity in the vertical plane of y = 0: (a) Re = 3000; (b) Re = 5000.

    图 11  k = 1.01 m2/s2时湍动能分布图 (a) Re = 3000; (b) Re = 5000

    Fig. 11.  Distribution of turbulent kinetic energy with k = 1.01 m2/s2: (a) Re = 3000; (b) Re = 5000.

    图 12  Re = 3000工况下湍动能谱 (a) Ha = 0; (b) Ha = 30

    Fig. 12.  Power energy spectra for uθ at Re = 3000: (a) Ha = 0; (b) Ha = 30.

    图 13  Re = 3000工况下泰勒涡在轴向磁场作用下的演化过程图(Q = 2000)

    Fig. 13.  Diagram of Taylor vortex evolution process under the action of axial magnetic field at Re = 3000, Q = 2000.

  • [1]

    Taylor G I 1923 Philos. Trans. R. Soc. A 223 289Google Scholar

    [2]

    Andereck C D, Liu S S, Swinney H L 1986 J. Fluid Mech. 164 155Google Scholar

    [3]

    叶立, 蔡小舒, 童正明 2012 化工进展 31 1878

    Ye L, Cai X S, Tong Z M 2012 Chem. Ind. Eng. Prog. 31 1878

    [4]

    Dutta P K, Ray A K 2004 Chem. Eng. Sci. 59 5249Google Scholar

    [5]

    Collet Y, Magotte O, Van den Bogaert N, Rolinsky R, Loix F, Jacot M, Regnier V, Marie J M, Dupret F 2012 J. Cryst. Growth 360 18Google Scholar

    [6]

    Li Y, Ruan D, Imaishi N, Wu S, Peng L, Zeng D 2003 Int. J. Heat Mass Transfer 46 2887Google Scholar

    [7]

    Gao X, Kong B, Vigil R D 2015 Bioresour. Technol. 198 283Google Scholar

    [8]

    Gil L V G, Singh H, Da Silva J D S, Santos D P D, Suazo C A T 2020 Biochem. Eng. J. 162 107710Google Scholar

    [9]

    Kang B K, Song Y H, Park W K, Kwag S H, Lim B S, Kwon S B, Yang W S, Yoon D H 2017 J. Eur. Ceram. Soc. 37 3673Google Scholar

    [10]

    Serov A F, Nazarov A D, Mamonov V N, Terekhov V I 2019 Appl. Energy 251 113362Google Scholar

    [11]

    Donnelly R J, Ozima M 1962 Proc. R. Soc. A 266 272Google Scholar

    [12]

    Tagawa T, Kaneda M 2005 J. Phys.: Conf. Ser. 14 007Google Scholar

    [13]

    Leng X Y, Kolesnikov Y B, Krasnov D, Li B W 2018 Phys. Fluids 30 015107Google Scholar

    [14]

    Leng X Y, Yu Y, Li B W 2014 Comput. Fluids 105 16Google Scholar

    [15]

    Zhao Y R, Tao J J, Zikanov O 2014 Phys. Rev. E 89 33002Google Scholar

    [16]

    Kikura H, Aritomi M, Takeda Y 2005 J. Magn. Magn. Mater. 289 342Google Scholar

    [17]

    Davidson P A 1995 J. Fluid Mech. 299 153Google Scholar

    [18]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2020 物理学报 69 134702Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fu Y A X 2020 Acta Phys. Sin. 69 134702Google Scholar

    [19]

    Kakarantzas S C, Benos L T, Sarris I E, Knaepenc B, Grecos A P, Vlachos N S 2017 Int. J. Heat Fluid Flow 65 342Google Scholar

    [20]

    Dong S 2007 J. Fluid Mech. 587 373Google Scholar

    [21]

    Cheng W, Pullin D I, Samtaney R 2020 J. Fluid Mech. 890 17Google Scholar

    [22]

    赵斌娟, 谢昀彤, 廖文言, 韩璐遥, 付燕霞, 黄忠富 2020 机械工程学报 56 216Google Scholar

    Zhao B J, Xie Y T, Liao W Y, Han L Y, Fu Y X, Huang Z F 2020 J. Mech. Eng. 56 216Google Scholar

    [23]

    杜珩, 阙夏, 刘难生 2014 中国科学技术大学学报 44 761Google Scholar

    Du H, Que X, Liu N S 2014 J. Univ. Sci. Technol. China 44 761Google Scholar

    [24]

    Leng X Y, Krasnov D, Kolesnikov Y, Li B W 2017 Magnetohydrodynamics 53 159Google Scholar

  • [1] 沈勇, 沈煜航, 董家齐, 李佳, 石中兵, 宗文刚, 潘莉, 李继全. 特定湍动激励-响应类型二次非线性系统双谱分析仿真建模. 物理学报, 2024, 73(18): 184701. doi: 10.7498/aps.73.20232013
    [2] 赵其进, 毛保全, 白向华, 杨雨迎, 陈春林. 横向磁场对绝缘/导电圆管中磁气体动力学流动和传热特性的影响. 物理学报, 2022, 71(16): 164702. doi: 10.7498/aps.71.20220051
    [3] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性. 物理学报, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [4] 郭广明, 刘洪, 张斌, 张庆兵. 脉冲激励下超音速混合层涡结构的演化机理. 物理学报, 2017, 66(8): 084701. doi: 10.7498/aps.66.084701
    [5] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性. 物理学报, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [6] 郭广明, 刘洪, 张斌, 张忠阳, 张庆兵. 混合层流场中涡结构对流速度的特性. 物理学报, 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [7] 张宇, 管玉平, 陈朝晖, 刘海龙, 黄瑞新. 不同滤波方法对揭示全球海洋条带结构的比较. 物理学报, 2015, 64(14): 149201. doi: 10.7498/aps.64.149201
    [8] 李小磊, 秦长剑, 张会臣. 激光空泡在文丘里管中运动的动力学特性. 物理学报, 2014, 63(5): 054707. doi: 10.7498/aps.63.054707
    [9] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 激波与层流/湍流边界层相互作用实验研究. 物理学报, 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [10] 屠功毅, 李伟锋, 黄国峰, 王辅臣. 平面撞击流偏斜振荡的实验研究与大涡模拟. 物理学报, 2013, 62(8): 084704. doi: 10.7498/aps.62.084704
    [11] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究. 物理学报, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [12] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性. 物理学报, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [13] 季小玲. 部分相干平顶光束通过湍流大气传输的等效曲率半径. 物理学报, 2010, 59(6): 3953-3958. doi: 10.7498/aps.59.3953
    [14] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [15] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [16] 薛春霞, 张善元, 树学锋. 横向磁场中大挠度金属薄板的混沌振动. 物理学报, 2010, 59(9): 6599-6605. doi: 10.7498/aps.59.6599
    [17] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [18] 桑海波, 贺凯芬. 噪声在外加周期信号控制强湍中的作用研究. 物理学报, 2008, 57(11): 6830-6836. doi: 10.7498/aps.57.6830
    [19] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制. 物理学报, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [20] 张旭, 沈柯. 环形腔中激光振荡输出的横向斑图及向光学湍流的转变. 物理学报, 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
计量
  • 文章访问数:  4824
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-04-05
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回