搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波与层流/湍流边界层相互作用实验研究

全鹏程 易仕和 武宇 朱杨柱 陈植

引用本文:
Citation:

激波与层流/湍流边界层相互作用实验研究

全鹏程, 易仕和, 武宇, 朱杨柱, 陈植

Experimental investigation of interactions between laminar or turbulent boundary layer and shock wave

Quan Peng-Cheng, Yi Shi-He, Wu Yu, Zhu Yang-Zhu, Chen Zhi
PDF
导出引用
  • 在超声速风洞中,分别对层流和湍流来流条件下的边界层和斜激波(激波强度足以引起流动分离)相互干扰进行了实验研究. 利用纳米粒子示踪平面激光散射(NPLS)技术获得了两种条件下流场的精细结构图像;利用粒子图像测速(PIV)技术获得了两种条件下流场的速度场和涡量场;综合运用NPLS结果和PIV 结果对比分析了两种流动的瞬时流动结构和时间相关性. 实验结果表明:层流边界层内的分离区呈现出狭长的条状,而湍流边界层内分离区呈现出较规则的椭圆;在入射激波上游距入射点较远的位置,层流边界层外围拟序结构会诱导出一系列压缩波系,进而汇聚成空间位置不稳定的诱导激波,而湍流边界层则是在入射激波上游较近的地方直接形成较强且稳定的诱导激波;在入射激波下游,层流边界层内的膨胀区域较小且急促,膨胀后产生的再附激波很弱,而湍流边界层内的膨胀区域较大,膨胀后产生的激波较强.
    Investigation on the interactions between laminar or turbulent layer and shock wave is performed in a Mach 3.4 supersonic wind tunnel, based on nanoparticle-tracer based planar laser scattering (NPLS) system and supersonic particle image velocimetry (PIV) system. The model geometry in this experiment is composed of two flats with different positions in the test section which can provide the flat with different kinds of boundary layer, and a shock wave generator–a 12° wedge. Boundary layer separation/attachment, induced suppression waves, induced shock wave and expansion fan were clearly presented by NPLS images, velocity field and vorticity field were given by PIV results. Instantaneous flow structures and temporal evolution of two different flow conditions were analysised and compared according to both NPLS and PIV results. The experimental results show that: the separation zone in the turbulent boundary layer is long and narrow, but it’s quite different in the turbulent boundary layer where it is oval-shaped; upstream of the oblique shock wave, a serious of suppression waves can be observed outside of the laminar boundary layer and they will focus into a unsteady induced shock wave, but in contrast, only a focused shock wave can be found outside of the turbulent boundary layer and it’s quite stable; the expansion fan downstream of the oblique shock wave is small in the laminar boundary layer, leading to a sufficient acceleration of the flow, and the attachment shock wave behind the expansion fan is extremely weak, however it is a totally different condition in the turbulent boundary layer with a wide expansion fan and a strong attachment shock wave.
    • 基金项目: 国家自然科学基金(批准号:11172326,11302256)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11172326, 11302256).
    [1]

    Dolling D S 2000 AIAA Paper 2000-2596

    [2]

    Gaitonde D V 2013 AIAA Paper 2013-2607

    [3]

    Smith D R, Poggie J, Konrad W, Smits A J 1991 AIAA Paper 1991-0651

    [4]

    Bueno P C, Ganapathisubramani B, Clemens N T, Dolling D S 2005 AIAA Paper 2005-441

    [5]

    Do H, Im S, Mungal M G, Cappelli M A 2011 Exp. Fluids 50 1651

    [6]

    Yi S H, He L, Tian L F, Zhao Y X 2010 Proceedings of the 14th Chinese National Symposium on Shock Waves Huangshan, China, July 14-16 2010 p29

    [7]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E: Tech. Sci. 52 3640

    [8]

    Yi S H, Tian L F, Zhao Y X, He L 2011 Adv. Mech. 41 379 (in Chinese) [易仕和, 田立丰, 赵玉新, 何霖 2011 力学进展 41 379]

    [9]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [10]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 57 584

    [11]

    Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702

    [12]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [13]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z2013 Chin. Phys. B 22 24704

    [14]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 184702]

  • [1]

    Dolling D S 2000 AIAA Paper 2000-2596

    [2]

    Gaitonde D V 2013 AIAA Paper 2013-2607

    [3]

    Smith D R, Poggie J, Konrad W, Smits A J 1991 AIAA Paper 1991-0651

    [4]

    Bueno P C, Ganapathisubramani B, Clemens N T, Dolling D S 2005 AIAA Paper 2005-441

    [5]

    Do H, Im S, Mungal M G, Cappelli M A 2011 Exp. Fluids 50 1651

    [6]

    Yi S H, He L, Tian L F, Zhao Y X 2010 Proceedings of the 14th Chinese National Symposium on Shock Waves Huangshan, China, July 14-16 2010 p29

    [7]

    Zhao Y X, Yi S H, Tian L F, Cheng Z Y 2009 Sci. China E: Tech. Sci. 52 3640

    [8]

    Yi S H, Tian L F, Zhao Y X, He L 2011 Adv. Mech. 41 379 (in Chinese) [易仕和, 田立丰, 赵玉新, 何霖 2011 力学进展 41 379]

    [9]

    Zhao Y X, Yi S H, He L, Cheng Z Y, Tian L F 2007 Chin. Sci. Bull. 52 1297

    [10]

    Chen Z, Yi S H, He L, Tian L F, Zhu Y Z 2012 Chin. Sci. Bull. 57 584

    [11]

    Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W 2013 Chin. Phys. B 22 014702

    [12]

    Zhang Q H, Yi S H, Zhu Y Z, Chen Z, Wu Y 2013 Chin. Phys. Lett. 30 044701

    [13]

    He L, Yi S H, Tian L F, Chen Z, Zhu Y Z2013 Chin. Phys. B 22 24704

    [14]

    Wu Y, Yi S H, Chen Z, Zhang Q H, Gang D D 2013 Acta Phys. Sin. 62 184702 (in Chinese) [武宇, 易仕和, 陈植, 张庆虎, 冈敦殿 2013 物理学报 62 184702]

  • [1] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟. 物理学报, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [2] 张博, 何霖, 易仕和. 超声速湍流边界层密度脉动小波分析. 物理学报, 2020, 69(21): 214702. doi: 10.7498/aps.69.20200748
    [3] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性. 物理学报, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [4] 刘强, 罗振兵, 邓雄, 杨升科, 蒋浩. 合成冷/热射流控制超声速边界层流动稳定性. 物理学报, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [5] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变. 物理学报, 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [6] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性. 物理学报, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [7] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [8] 张宇, 管玉平, 陈朝晖, 刘海龙, 黄瑞新. 不同滤波方法对揭示全球海洋条带结构的比较. 物理学报, 2015, 64(14): 149201. doi: 10.7498/aps.64.149201
    [9] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展. 物理学报, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [10] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析. 物理学报, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [11] 李小磊, 秦长剑, 张会臣. 激光空泡在文丘里管中运动的动力学特性. 物理学报, 2014, 63(5): 054707. doi: 10.7498/aps.63.054707
    [12] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究. 物理学报, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [13] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性. 物理学报, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [14] 季小玲. 部分相干平顶光束通过湍流大气传输的等效曲率半径. 物理学报, 2010, 59(6): 3953-3958. doi: 10.7498/aps.59.3953
    [15] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [16] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [17] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [18] 桑海波, 贺凯芬. 噪声在外加周期信号控制强湍中的作用研究. 物理学报, 2008, 57(11): 6830-6836. doi: 10.7498/aps.57.6830
    [19] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制. 物理学报, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [20] 张旭, 沈柯. 环形腔中激光振荡输出的横向斑图及向光学湍流的转变. 物理学报, 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
计量
  • 文章访问数:  7199
  • PDF下载量:  16123
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-26
  • 修回日期:  2014-01-24
  • 刊出日期:  2014-04-05

/

返回文章
返回