搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特定湍动激励-响应类型二次非线性系统双谱分析仿真建模

沈勇 沈煜航 董家齐 李佳 石中兵 宗文刚 潘莉 李继全

引用本文:
Citation:

特定湍动激励-响应类型二次非线性系统双谱分析仿真建模

沈勇, 沈煜航, 董家齐, 李佳, 石中兵, 宗文刚, 潘莉, 李继全
cstr: 32037.14.aps.73.20232013

Bispectral analysis and simulation modeling of quadratic nonlinear system with specific turbulent-fluctuation-excitation-response types

Shen Yong, Shen Yu-Hang, Dong Jia-Qi, Li Jia, Shi Zhong-Bing, Zong Wen-Gang, Pan Li, Li Ji-Quan
cstr: 32037.14.aps.73.20232013
PDF
HTML
导出引用
  • 自然界存在一类特定湍动激励类型二次非线性系统, 属于一种特殊的非高斯信号系统, 其特征是输入信号谱由湍流波动产生, 而且这种湍流波动信号功率谱分布接近高斯分布. 本文从拓展Choi等(1985 J. Sound Vib. 99 309]和Kim等(1987 IEEE J. Ocean. Eng. OE-12 568)的工作入手, 对以海浪激励-系泊船舶响应和充分发展湍流为代表的特定湍动激励-响应类二次非线性系统, 基于双谱分析技术进行系统仿真, 并对仿真系统进行了扩展的、系统的建模分析, 并首次应用完备迭代法(2020 Phys. Scr. 95 055202)进行模型求解, 计算了线性传递函数与二次非线性传递函数. 所得结果均符合预期. 相干分析表明, 随机海浪-船舶摇动系统二次相干性远大于线性相干性, 但近高斯输入型充分发展湍流的线性相干性更大. 反算验证或与真实系统的对比表明, 本文的湍流仿真手段与系统建模方法准确性好, 求解算法效率高, 可以有效应用于与湍动激励相关的二次非线性系统的模型描述与系统分析.
    There exists a kind of quadratic nonlinear system with specific type of turbulent fluctuation excitation in nature, which belongs to a special non-Gaussian input signal system. Its characteristic is that the input signal spectrum is generated by turbulent fluctuations, and the power spectrum distribution of this turbulence fluctuation signal is close to Gaussian distribution. Starting with the work of Choi et al. (1985 J. Sound Vib. 99 309) and Kim et al. [1987 IEEE J. Ocean. Eng. OE-12 568), we extend the simulation of a specific turbulent fluctuation excited response-type quadratic nonlinear system represented by the wave excited mooring ship response, and fully develop the internal development of turbulence based on bispectral analysis technology. We also extend the simulation system and conduct systematic modeling analysis. The complete iterative method [2020 Phys. Scr. 95 055202] is used to solve the model, and calculate the linear transfer function and quadratic nonlinear transfer function. The comparison of simulation and modeling results with the real systems and their models confirms the correctness of the results from system simulation, system modeling, and model solving. The results obtained are all in line with expectations. The coherence analysis shows that the quadratic coherence of the random wave-ship swaying system is much greater than the linear coherence, but the linear coherence of the fully developed turbulence is greater for the near Gaussian input type. The reverse computation verification or comparison with real systems indicates that the turbulence simulation and system modeling method in this work have good accuracy and high efficiency in solving algorithms, and the research results can be effectively applied to the model description and system analysis of the quadratic nonlinear systems related to specific turbulent fluctuation excitation response.
      通信作者: 沈勇, sheny@swip.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12075077, 12175055)和国家重点研发计划(批准号: 2019YFE03050003, 2017YFE0301200)资助的课题.
      Corresponding author: Shen Yong, sheny@swip.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12075077, 12175055) and the National Key R&D Program of China (Grant Nos. 2019YFE03050003, 2017YFE0301200).
    [1]

    Choi D, Miksad R W, Powers E J 1985 J. Sound Vib. 99 309Google Scholar

    [2]

    Kim K I, Powers E J, Ritz Ch P, Miksad R W, Fischer F J 1987 IEEE J. Ocean. Eng. OE-12 568Google Scholar

    [3]

    Cherneva Z, Soares C G 2008 Appl. Ocean Res. 30 215Google Scholar

    [4]

    Howard R S, Finneran J J, Ridgway S H 2006 Anesth. Analg. 103 626Google Scholar

    [5]

    Zhang J, Benoit M, Kimmoun O, Chabchoub A, Hsu H C 2019 Fluids 4 99Google Scholar

    [6]

    Zhang S G, Lian J J, Li J X, Liu F, Ma B 2022 Ocean Eng. 264 112473Google Scholar

    [7]

    Smith D E, Powers E J 1973 Phys. Fluids 16 1373Google Scholar

    [8]

    Hasegawa A, Maclennan C G 1979 Phys. Fluids 22 2122Google Scholar

    [9]

    Schmidt O T 2020 Nonlinear Dynam. 102 2479Google Scholar

    [10]

    Cui G, Jacobi I 2021 Phys. Rev. Fluids 6 014604Google Scholar

    [11]

    O’Brien M J, Burkhart B, Shelley M J 2022 Astrophys. J. 930 149Google Scholar

    [12]

    Unnikrishnan S, Gaitonde D V 2020 J. Fluid Mech. 905 A25Google Scholar

    [13]

    Enugonda R, Anandan V K, Ghosh B 2023 J. Electromagnet. Wave. 37 69Google Scholar

    [14]

    Ge Z, Liu P C 2007 Ann. Geophys. 25 1253Google Scholar

    [15]

    Kim Y C, Powers E J 1979 IEEE Trans. Plasma Sci. PS-7 120Google Scholar

    [16]

    Smith D E, Powers E J, Caldwell G S 1974 IEEE Trans. Plasma Sci. PS-2 263Google Scholar

    [17]

    Manz P, Ramisch M, Stroth U, Naulin V, Scott B D 2008 Plasma Phys. Contr. Fusion 50 035008Google Scholar

    [18]

    Manz P, Ramisch M, Stroth U 2009 Phys. Rev. Lett. 103 165004Google Scholar

    [19]

    Shen Y, Shen Y H, Dong J Q, Zhao K J, Shi Z B, Li J Q 2022 Chin. Phys. B 31 065206Google Scholar

    [20]

    Shen Y, Dong J Q, Shi Z B, Nagayama Y, Hirano Y, Yambe K, Yamaguchi S, Zhao K J, Li J Q 2019 Nucl. Fusion 59 044001Google Scholar

    [21]

    Kim Y C, Wong W F, Powers E J, Roth J R 1979 Proc. IEEE 67 428Google Scholar

    [22]

    Hong J Y, Kim Y C, Powers E J 1980 Proc. IEEE 68 1026Google Scholar

    [23]

    Ritz Ch P, Powers E J 1986 Physica D 20 320Google Scholar

    [24]

    Ritz C P, Powers E J, Miksad R W, Solis R S 1988 Phys. Fluids 31 3577Google Scholar

    [25]

    Ritz Ch P, Powers E J, Bengtson R D 1989 Phys. Fluids B 1 153Google Scholar

    [26]

    Kim J S, Durst R D, Fonck R J, Fernandez E, Ware A, Terry P W 1996 Phys. Plasmas 3 3998Google Scholar

    [27]

    Shen Y H, Li J Y, Li T, Li J 2020 Phys. Scr. 95 055202Google Scholar

    [28]

    Shen Y H, Li J, Li T 2020 J. Phys. Soc. Jpn. 89 044501Google Scholar

    [29]

    Hasegawa A, Mimma K 1978 Phys. Fluids 21 87Google Scholar

    [30]

    Proakis J G, Manolakis D G 2006 Digital Signal Processing-Principles, Algorithem, and Applications (4th Ed.) (Beijing: Electronic Industry Press

    [31]

    Dolgikh G I, Gromasheva O S, Dolgikh S G, Plotnikov A A 2021 J. Mar. Sci. Eng. 9 861Google Scholar

    [32]

    Xu M, Tynan G R, Holland C, Yan Z, Muller S H, Yu J H 2009 Phys. Plasmas 16 042312Google Scholar

  • 图 1  系泊船舶在单向不规则随机海洋中的摇摆运动 (a) 随机海浪波高记录; (b) 入射海浪的自功率谱; (c) 系泊配置; (d) 系泊船舶摇摆响应的时间记录; (e) 系泊船舶摇摆响应的自功率谱(参考自文献[1], 类似的图也可见于文献[2])

    Fig. 1.  Sway motion of a moored vessel in response to a unidirectional irregular beam sea: (a) Incident irregular sea record; (b) auto-power spectrum of incident sea-wave; (c) mooring configuration; (d) time record of moored barge sway response; (e) auto-power spectrum of barge sway response (Referenced by Ref. [1], as well as Ref. [2]).

    图 2  充分发展湍流结构图 (a) 湍流信号自功率谱; (b) $ t=16\Delta t, 32\Delta t, 64\Delta t $三个时刻测量的湍流信号, 其中$ \Delta t $表示测试两个相邻信号的时间间隔

    Fig. 2.  Fully developed turbulence: (a) Turbulence signal auto-power spectrum; (b) simulated turbulence signals measured at $ t=16\Delta t, 32\Delta t $ and $ 64\Delta t $.

    图 3  方程(2)中给出的非线性系统的示意模型

    Fig. 3.  Schematic model of the nonlinear system given in Eq. (2).

    图 4  随机海波激励船舶摇摆系统试验数据 (a) 输入信号谱密度; (b) 近似输入(随机海波波高仿真)信号; (c) 输出信号谱密度; (d) 近似输出(摇摆位形仿真)信号

    Fig. 4.  Test data of moored vessel sway system excited by random sea waves: (a) Input signal spectra; (b) approximate input (simulated random sea wave height) signals; (c) output signal spectral density; (d) approximate output (simulated sway configuration) signal.

    图 5  系统输入/输出信号互双谱幅度$ |\langle{{Y}_{i+j}{X}_{i}^{*}{X}_{j}^{*}}\rangle| $ (a) 立体视图; (b) 等高线视图

    Fig. 5.  Amplitude of the cross bi-spectrum of the system $ |\langle{{Y}_{i+j}{X}_{i}^{*}{X}_{j}^{*}}\rangle| $: (a) Perspective view; (b) contour plot.

    图 6  计算结果 (a) 线性传递函数$ {L}_{f} $实部; (b) $ {L}_{f} $虚部; (c) $ {L}_{f} $幅度, 其中, 绿线和黑色点线分别表示完备程序(包含非高斯(non-Gaussian)效应)和高斯(Gaussian)程序的计算结果; (d)完备程序计算的二次传递函数幅度$ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $三维分布图; (e)高斯程序计算的二次传递函数幅度$ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $三维分布图

    Fig. 6.  Resultant calculations: (a) The real of linear transfer function $ {L}_{f} $; (b) the imaginary of linear transfer function $ {L}_{f}; $(c) the magnitude of linear transfer function $ {L}_{f} $, where the green and black dotted lines are the results calculated using complete program (including non-Gaussian effects) and Gaussian program, respectively; (d) the perspective view (triple distribution) of the magnitude of quadratic transfer function $ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $ calculated by complete programs; (e) the perspective view (triple distribution) of the magnitude of quadratic transfer function $ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $ calculated by Gaussian programs.

    图 7  收敛性分析 (a) $ \left|{L}_{f}\right| $相对误差; (b) $ \left|{Q}_{f}\right| $相对误差

    Fig. 7.  Convergence analysis: (a) Relative error of $ \left|{L}_{f}\right| $; (b) relative error of $ \left|{Q}_{f}\right| $.

    图 9  相干系数 (a) 应用完备程序计算结果; (b) 应用高斯输入型程序计算结果

    Fig. 9.  Coherence coefficients: (a) Results from the complete program; (b) results from specific program for Gaussian input signals.

    图 8  二次传递函数幅度$ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $等位线图

    Fig. 8.  Contour plot of the magnitude of quadratic transfer function $ |{Q}_{f}^{{f}_{1}, {f}_{2}}| $.

    图 10  验算结果 (a)原初始输入信号谱与计算的输出信号谱; (b)复验的摇摆位形; (c)应用高斯输入程序结果复验; (d)在复验处理中移除汉宁窗得到的摇摆位形, 与原输出位形一致

    Fig. 10.  Verification results: (a) The original initial input signal spectrum and the calculated output signal spectrum; (b) sway configure of the retest; (c) sway configure computed after applying Gaussian-input program; (d) sway configure computed after removing the Hanning window.

    图 11  充分发展湍流的模拟输入与输出信号谱

    Fig. 11.  Simulated input and output spectra of fully developed turbulence.

    图 12  全发展湍流输入/输出信号互双谱幅度$ |\langle{{Y}_{i+j}{X}_{i}^{{\mathrm{*}}}{X}_{j}^{{\mathrm{*}}}}\rangle| $ (a) 立体视图; (b) 等高线视图

    Fig. 12.  Amplitude of the cross bi-spectrum of the full-developed turbulence $ |\langle{{Y}_{i+j}{X}_{i}^{{\mathrm{*}}}{X}_{j}^{{\mathrm{*}}}}\rangle| $: (a) Perspective view; (b) contour plot.

    图 13  充分发展湍流系统传递函数计算结果, 其中$ k={k}_{1}^{N}+{k}_{2}^{N},\; {k}_{1}^{N}={f}_{1}/{f}_{{\mathrm{N}}{\mathrm{y}}{\mathrm{q}}} $, $ {k}_{2}^{N}={f}_{2}/{f}_{{\mathrm{N}}{\mathrm{y}}{\mathrm{q}}} $

    Fig. 13.  Calculation results of transfer function for simulated full-developed turbulent systems, where $ k={k}_{1}^{N}+{k}_{2}^{N} $, with $ {k}_{1}^{N}={f}_{1}/{f}_{{\mathrm{N}}{\mathrm{y}}{\mathrm{q}}} $ and $ {k}_{2}^{N}={f}_{2}/{f}_{{\mathrm{N}}{\mathrm{y}}{\mathrm{q}}} $.

    图 14  相干性分析

    Fig. 14.  Coherence analysis.

    图 15  扩充计算 (a)相位差; (b)平均色散; (c) 线性增长率

    Fig. 15.  Extended calculation: (a) Phase difference; (b) average dispersion; (c) linear growth rate.

    图 16  根据输出湍流信号谱反算的信号幅度随测量时间点的变化(部分)

    Fig. 16.  Output signals calculated based on the output turbulent signal spectra (a part).

  • [1]

    Choi D, Miksad R W, Powers E J 1985 J. Sound Vib. 99 309Google Scholar

    [2]

    Kim K I, Powers E J, Ritz Ch P, Miksad R W, Fischer F J 1987 IEEE J. Ocean. Eng. OE-12 568Google Scholar

    [3]

    Cherneva Z, Soares C G 2008 Appl. Ocean Res. 30 215Google Scholar

    [4]

    Howard R S, Finneran J J, Ridgway S H 2006 Anesth. Analg. 103 626Google Scholar

    [5]

    Zhang J, Benoit M, Kimmoun O, Chabchoub A, Hsu H C 2019 Fluids 4 99Google Scholar

    [6]

    Zhang S G, Lian J J, Li J X, Liu F, Ma B 2022 Ocean Eng. 264 112473Google Scholar

    [7]

    Smith D E, Powers E J 1973 Phys. Fluids 16 1373Google Scholar

    [8]

    Hasegawa A, Maclennan C G 1979 Phys. Fluids 22 2122Google Scholar

    [9]

    Schmidt O T 2020 Nonlinear Dynam. 102 2479Google Scholar

    [10]

    Cui G, Jacobi I 2021 Phys. Rev. Fluids 6 014604Google Scholar

    [11]

    O’Brien M J, Burkhart B, Shelley M J 2022 Astrophys. J. 930 149Google Scholar

    [12]

    Unnikrishnan S, Gaitonde D V 2020 J. Fluid Mech. 905 A25Google Scholar

    [13]

    Enugonda R, Anandan V K, Ghosh B 2023 J. Electromagnet. Wave. 37 69Google Scholar

    [14]

    Ge Z, Liu P C 2007 Ann. Geophys. 25 1253Google Scholar

    [15]

    Kim Y C, Powers E J 1979 IEEE Trans. Plasma Sci. PS-7 120Google Scholar

    [16]

    Smith D E, Powers E J, Caldwell G S 1974 IEEE Trans. Plasma Sci. PS-2 263Google Scholar

    [17]

    Manz P, Ramisch M, Stroth U, Naulin V, Scott B D 2008 Plasma Phys. Contr. Fusion 50 035008Google Scholar

    [18]

    Manz P, Ramisch M, Stroth U 2009 Phys. Rev. Lett. 103 165004Google Scholar

    [19]

    Shen Y, Shen Y H, Dong J Q, Zhao K J, Shi Z B, Li J Q 2022 Chin. Phys. B 31 065206Google Scholar

    [20]

    Shen Y, Dong J Q, Shi Z B, Nagayama Y, Hirano Y, Yambe K, Yamaguchi S, Zhao K J, Li J Q 2019 Nucl. Fusion 59 044001Google Scholar

    [21]

    Kim Y C, Wong W F, Powers E J, Roth J R 1979 Proc. IEEE 67 428Google Scholar

    [22]

    Hong J Y, Kim Y C, Powers E J 1980 Proc. IEEE 68 1026Google Scholar

    [23]

    Ritz Ch P, Powers E J 1986 Physica D 20 320Google Scholar

    [24]

    Ritz C P, Powers E J, Miksad R W, Solis R S 1988 Phys. Fluids 31 3577Google Scholar

    [25]

    Ritz Ch P, Powers E J, Bengtson R D 1989 Phys. Fluids B 1 153Google Scholar

    [26]

    Kim J S, Durst R D, Fonck R J, Fernandez E, Ware A, Terry P W 1996 Phys. Plasmas 3 3998Google Scholar

    [27]

    Shen Y H, Li J Y, Li T, Li J 2020 Phys. Scr. 95 055202Google Scholar

    [28]

    Shen Y H, Li J, Li T 2020 J. Phys. Soc. Jpn. 89 044501Google Scholar

    [29]

    Hasegawa A, Mimma K 1978 Phys. Fluids 21 87Google Scholar

    [30]

    Proakis J G, Manolakis D G 2006 Digital Signal Processing-Principles, Algorithem, and Applications (4th Ed.) (Beijing: Electronic Industry Press

    [31]

    Dolgikh G I, Gromasheva O S, Dolgikh S G, Plotnikov A A 2021 J. Mar. Sci. Eng. 9 861Google Scholar

    [32]

    Xu M, Tynan G R, Holland C, Yan Z, Muller S H, Yu J H 2009 Phys. Plasmas 16 042312Google Scholar

  • [1] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟. 物理学报, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [2] 何仁, 李英叶, 陈敬欣, 赵学玲, 汤欢, 张丽娜, 沈艳娇, 李锋, 杨琳, 韦德远. 三点、四点法机械性能测试建模及其在太阳电池中的应用. 物理学报, 2019, 68(20): 208801. doi: 10.7498/aps.68.20190597
    [3] 王玉峰, 张晶, 汤柳, 王晴, 高天乐, 宋跃辉, 狄慧鸽, 李博, 华灯鑫. 基于拉曼激光雷达的大气三相态水同步精细探测分光系统的设计与仿真分析. 物理学报, 2018, 67(22): 224205. doi: 10.7498/aps.67.20180644
    [4] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性. 物理学报, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [5] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变. 物理学报, 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [6] 赵光银, 李应红, 梁华, 化为卓, 韩孟虎. 纳秒脉冲表面介质阻挡等离子体激励唯象学仿真. 物理学报, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [7] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 激波与层流/湍流边界层相互作用实验研究. 物理学报, 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [8] 包伯成, 王春丽, 武花干, 乔晓华. 忆阻电路降维建模与特性分析. 物理学报, 2014, 63(2): 020504. doi: 10.7498/aps.63.020504
    [9] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究. 物理学报, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [10] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [11] 杨晓芳, 茅威, 付强. 基于动态地场和元胞自动机的自行车流建模. 物理学报, 2013, 62(24): 240511. doi: 10.7498/aps.62.240511
    [12] 陈亮, 郭仁拥, 塔娜. 双出口房间内疏散行人流的仿真和实验研究. 物理学报, 2013, 62(5): 050506. doi: 10.7498/aps.62.050506
    [13] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [14] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [15] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [16] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制. 物理学报, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [17] 李 军, 董海鹰. 基于小波核偏最小二乘回归方法的混沌系统建模研究. 物理学报, 2008, 57(8): 4756-4765. doi: 10.7498/aps.57.4756
    [18] 张小平, 朱建林, 文泽军, 岳 舟, 柳莎莎. 一种基于双闭环控制策略的新型矩阵变换器研究. 物理学报, 2007, 56(5): 2523-2528. doi: 10.7498/aps.56.2523
    [19] 叶美盈. 基于最小二乘支持向量机建模的混沌系统控制. 物理学报, 2005, 54(1): 30-34. doi: 10.7498/aps.54.30
    [20] 张旭, 沈柯. 环形腔中激光振荡输出的横向斑图及向光学湍流的转变. 物理学报, 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
计量
  • 文章访问数:  876
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-25
  • 修回日期:  2024-08-25
  • 上网日期:  2024-08-28
  • 刊出日期:  2024-09-20

/

返回文章
返回