搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

部分相干平顶光束通过湍流大气传输的等效曲率半径

季小玲

引用本文:
Citation:

部分相干平顶光束通过湍流大气传输的等效曲率半径

季小玲

Effective radius of curvature of partially coherent flat-topped beam propagating through atmospheric turbulence

Ji Xiao-Ling
PDF
导出引用
  • 推导出了部分相干平顶光束在湍流大气中传输的等效曲率半径的解析表达式,详细地研究了湍流对其等效曲率半径的影响.研究表明,湍流使得等效曲率半径R减小,但是只有当湍流足够强时等效曲率半径极小值出现的位置zmin才会改变.在弱湍流中,R随着光束相干长度β的增大而增大;但是在强湍流中,R随着β的增大而减小.R随着光束阶数M(N)的增大而缓慢减小.若β越大、
    The analytical expression for the effective radius of curvature R of a partially coherent flat-topped beam propagating through atmospheric turbulence is derived. It is shown that R decreases due to turbulence. However, position zmin where R reaches its minimum will change due to the turbulence when the strength of turbulence is strong enough. The effective radius of curvature R increases with the increase of beam coherence parameter β when the strength of turbulence is weak, while R decreases with β increasing when the strength of turbulence is strong. The R decreases slowly with the increase of beam order M(N). The R of partially coherent flat-topped beam with larger β and smaller M(N) is more sensitive to turbulence. In addition, in free space the wavefront of partially coherent flat-topped beam can be regarded as a spherical surface in the far-field, which is independent of the beam parameters. However, in turbulence the effective radius of curvature depends on the beam parameters in the near field and also in the far field.
    • 基金项目: 国家自然科学基金(批准号:60778048)资助的课题.
    [1]

    [1]Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592

    [2]

    [2] Dogariu A, Amarande S 2003 Opt. Lett. 28 10

    [3]

    [3] Shirai T, Dogariu A, Wolf E 2003 J. Opt. Soc. Am. A 20 1094

    [4]

    [4] Cai Y J, He S 2006 Appl. Phys. Lett. 89 041117

    [5]

    [5] Zhang E T, Ji X L, Lü B D 2009 Chin. Phys. B 18 571

    [6]

    [6] Roychowdhury H, Wolf E 2004 Opt. Commun. 241 11

    [7]

    [7] Ji X L, Zhang E T, Lü B D 2006 Opt. Commun. 259 1

    [8]

    [8] Lu W, Liu L, Sun J, Yang Q, Zhu Y 2007 Opt. Commun. 271 1

    [9]

    [9] Ji X L, Chen X W, Chen S H, Li X Q, Lü B D 2007 J. Opt. Soc. Am. A 24 3554

    [10]

    ] Korotkova O, Salem M, Wolf E 2004 Opt. Commun. 233 225

    [11]

    ] Salem M, Korotkova O, Dogariu A, Wolf E 2004 Waves Rand. Med. 14 513

    [12]

    ] Eyyuboglu H T, Baykal Y, Cai Y 2007 Appl. Phys. B 89 91

    [13]

    ] Ji X L, Huang T X, Lü B D 2006 Acta Phys. Sin. 55 978 (in Chinese) [季小玲、黄太星、吕百达2006物理学报55 978]

    [14]

    ] Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛、蒲继雄 2007物理学报 56 6754]

    [15]

    ] Zhang E T, Ji X L, Lü B D 2009 Chin. Phys. B 18 571

    [16]

    ] Chen X W, Ji X L 2010 Chin. Phys. B 19 024203

    [17]

    ] Ji X L, Pu Z C 2010 Chin. Phys. B 19 029201

    [18]

    ] Ricklin J C, Davidson F M 2002 J. Opt. Soc. Am. A 19 1794

    [19]

    ] Seshadri S R 2000 J. Opt. Soc. Am. A 17 780

    [20]

    ] Zahid M, Zubairy M S 1989 Opt. Commun. 70 361

    [21]

    ] Li Y 2002 Opt. Commun. 206 225

    [22]

    ] Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)

    [23]

    ] Siegman A E 1990 Proc. SPIE 1224 2

    [24]

    ] Friberg A T, Turunen J 1988 J. Opt. Soc. Am. A 5 713

    [25]

    ] Dan Y, Zhang B 2009 Opt. Lett. 34 563

    [26]

    ] Weber H 1992 Opt. Quantum Electron. 24 1027

    [27]

    ] Andrews L C, Phillips R L 1998 Laser Beam Propagation Through Random Media (Bellingham, Washington: SPIE Press)

  • [1]

    [1]Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592

    [2]

    [2] Dogariu A, Amarande S 2003 Opt. Lett. 28 10

    [3]

    [3] Shirai T, Dogariu A, Wolf E 2003 J. Opt. Soc. Am. A 20 1094

    [4]

    [4] Cai Y J, He S 2006 Appl. Phys. Lett. 89 041117

    [5]

    [5] Zhang E T, Ji X L, Lü B D 2009 Chin. Phys. B 18 571

    [6]

    [6] Roychowdhury H, Wolf E 2004 Opt. Commun. 241 11

    [7]

    [7] Ji X L, Zhang E T, Lü B D 2006 Opt. Commun. 259 1

    [8]

    [8] Lu W, Liu L, Sun J, Yang Q, Zhu Y 2007 Opt. Commun. 271 1

    [9]

    [9] Ji X L, Chen X W, Chen S H, Li X Q, Lü B D 2007 J. Opt. Soc. Am. A 24 3554

    [10]

    ] Korotkova O, Salem M, Wolf E 2004 Opt. Commun. 233 225

    [11]

    ] Salem M, Korotkova O, Dogariu A, Wolf E 2004 Waves Rand. Med. 14 513

    [12]

    ] Eyyuboglu H T, Baykal Y, Cai Y 2007 Appl. Phys. B 89 91

    [13]

    ] Ji X L, Huang T X, Lü B D 2006 Acta Phys. Sin. 55 978 (in Chinese) [季小玲、黄太星、吕百达2006物理学报55 978]

    [14]

    ] Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛、蒲继雄 2007物理学报 56 6754]

    [15]

    ] Zhang E T, Ji X L, Lü B D 2009 Chin. Phys. B 18 571

    [16]

    ] Chen X W, Ji X L 2010 Chin. Phys. B 19 024203

    [17]

    ] Ji X L, Pu Z C 2010 Chin. Phys. B 19 029201

    [18]

    ] Ricklin J C, Davidson F M 2002 J. Opt. Soc. Am. A 19 1794

    [19]

    ] Seshadri S R 2000 J. Opt. Soc. Am. A 17 780

    [20]

    ] Zahid M, Zubairy M S 1989 Opt. Commun. 70 361

    [21]

    ] Li Y 2002 Opt. Commun. 206 225

    [22]

    ] Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)

    [23]

    ] Siegman A E 1990 Proc. SPIE 1224 2

    [24]

    ] Friberg A T, Turunen J 1988 J. Opt. Soc. Am. A 5 713

    [25]

    ] Dan Y, Zhang B 2009 Opt. Lett. 34 563

    [26]

    ] Weber H 1992 Opt. Quantum Electron. 24 1027

    [27]

    ] Andrews L C, Phillips R L 1998 Laser Beam Propagation Through Random Media (Bellingham, Washington: SPIE Press)

  • [1] 沈勇, 沈煜航, 董家齐, 李佳, 石中兵, 宗文刚, 潘莉, 李继全. 特定湍动激励-响应类型二次非线性系统双谱分析仿真建模. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20232013
    [2] 董帅, 纪祥勇, 李春曦. 横向磁场作用下Taylor-Couette湍流流动的大涡模拟. 物理学报, 2021, 70(18): 184702. doi: 10.7498/aps.70.20210389
    [3] 崔少燕, 吕欣欣, 辛杰. 广义非线性薛定谔方程描述的波坍缩及其演变. 物理学报, 2016, 65(4): 040201. doi: 10.7498/aps.65.040201
    [4] 黄茂静, 包芸. 湍流热对流近底板流态与温度边界层特性. 物理学报, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [5] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展. 物理学报, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [6] 张宇, 管玉平, 陈朝晖, 刘海龙, 黄瑞新. 不同滤波方法对揭示全球海洋条带结构的比较. 物理学报, 2015, 64(14): 149201. doi: 10.7498/aps.64.149201
    [7] 李小磊, 秦长剑, 张会臣. 激光空泡在文丘里管中运动的动力学特性. 物理学报, 2014, 63(5): 054707. doi: 10.7498/aps.63.054707
    [8] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植. 激波与层流/湍流边界层相互作用实验研究. 物理学报, 2014, 63(8): 084703. doi: 10.7498/aps.63.084703
    [9] 武宇, 易仕和, 陈植, 张庆虎, 冈敦殿. 超声速层流/湍流压缩拐角流动结构的实验研究. 物理学报, 2013, 62(18): 184702. doi: 10.7498/aps.62.184702
    [10] 邵晓利, 季小玲. 截断的有振幅调制和位相畸变光束的等效曲率半径. 物理学报, 2012, 61(16): 164209. doi: 10.7498/aps.61.164209
    [11] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性. 物理学报, 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [12] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [13] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [14] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [15] 桑海波, 贺凯芬. 噪声在外加周期信号控制强湍中的作用研究. 物理学报, 2008, 57(11): 6830-6836. doi: 10.7498/aps.57.6830
    [16] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制. 物理学报, 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [17] 程 科, 闫红卫, 吕百达. 部分相干涡旋光束叠加场中的合成相干涡旋及其动态传输. 物理学报, 2008, 57(8): 4911-4920. doi: 10.7498/aps.57.4911
    [18] 付文羽, 马书懿. 部分相干平顶光束经光阑衍射的偏振特性. 物理学报, 2008, 57(2): 1271-1277. doi: 10.7498/aps.57.1271
    [19] 张 艳, 文 侨, 张 彬. 部分相干平顶光束在线性增益(损耗)介质中的光谱特性. 物理学报, 2006, 55(9): 4962-4967. doi: 10.7498/aps.55.4962
    [20] 张旭, 沈柯. 环形腔中激光振荡输出的横向斑图及向光学湍流的转变. 物理学报, 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
计量
  • 文章访问数:  7836
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-27
  • 修回日期:  2009-10-26
  • 刊出日期:  2010-03-05

/

返回文章
返回