搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高聚物减阻溶液对壁湍流输运过程的影响

管新蕾 王维 姜楠

引用本文:
Citation:

高聚物减阻溶液对壁湍流输运过程的影响

管新蕾, 王维, 姜楠

Influnce of polymer additives on the transport process in drag reducing turbulent flow

Guan Xin-Lei, Wang Wei, Jiang Nan
PDF
导出引用
  • 基于相同雷诺数下清水和高分子聚合物溶液壁湍流的高时间分辨率粒子图像测速技术(time-resolved particle image velocimetry, TRPIV)的对比实验, 从高聚物溶液对湍流边界层动量能量输运影响的角度分析其减阻的机理. 对比两者的雷诺应力发现高聚物的存在抑制了湍流输运过程. 这一影响与高聚物对壁湍流中占主导地位的涡旋运动和低速条带等相干结构的作用密切相关. 运用条件相位平均、相关函数和线性随机估计(linear stochastic estimation, LSE)等方法, 分析提取了高聚物溶液流场中的发卡涡和发卡涡包等典型相干结构的空间拓扑形态. 相比于清水, 高聚物溶液中相干结构的流向尺度增大, 涡旋运动的发展及低速流体喷射的强度受到削弱, 表明了添加的高聚物阻碍了湍流原有的能量传递和自维持的机理. 正是通过影响相干结构, 高聚物抑制了湍流边界层中近壁区与外区之间的动量和能量输运, 使得湍流的无序性降低, 从而减小了湍流流动的阻力.
    The spatial-temporal sequence of velocity fields in wall turbulence with and without polymer additives at the same Reynolds number are measured by time-resolved particle image velocimetry (TRPIV) from the side and top views. Based on this experimental database of a water channel, the mechanism of drag reduction by polymers is explored from the viewpoint of the influence of polymer solution on the transport of momentum and energy in a turbulent boundary layer. Comparison of Reynolds stress profiles confirms that due to the existence of polymer additives, the transport of turbulent momentum is significantly inhibited, as if caused by the decrease of Reynolds shear stress. Furthermore, it is noted that these changes are closely related to the effect of polymer additives on the classical coherent structures, such as vortices and low-speed streaks, which are the dominant structures in near-wall turbulence. The spatial topological mode of hairpin vortex extracted by conditional sampling method shows that the intensity of vortices and ejection event are greatly suppressed by the polymer solution. Not only does the decline of turbulent kinetic energy production indicate that the energy of hairpin vortices that comes from the ensemble average movement is attenuated in the solution, but all this implys that the polymer additives hinder the self-sustaining mechanism, the inherent character of wall turbulence. Then, the analysis of linear stochastic estimation (LSE) suggests that the development of hairpin vortices in the packet is impeded, which is mainly reflected in the reduction of the number of hairpin vortices and the suppression of uplift in the wall-normal direction. To investigate the change of low-speed streaks after the addition of polymers, the spanwise autocorrelation function of streamwise fluctuating velocities has been calculated. In the polymer solution the large-scale vortices areflenhanced while the small-scale vortices are suppressed. This observation refleals that the polymers disrupt the energy transport from large to small scales. To summarize, it is through the action on coherent structures that the polymer additives can damp the transport of momentum and energy between the near-wall region and outer region of the boundary layer. In this way, the polymer solution makes turbulent flow less chaotic, leading to the reduction of friction drag.
    • 基金项目: 国家自然科学基金重点项目(批准号: 11332006)、国家自然科学基金(批准号: 11272233)、国家自然科学基金国际合作与交流项目(批准号: 11411130150)和国家重点基础研究发展计划(973计划)(批准号: 2012CB720101, 2012CB720103)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11332006), the National Natural Science Foundation of China (Grant No. 11272233), the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 11411130150), and the National Basic Research Program of China (Grant Nos. 2012CB720101, 2012CB720103).
    [1]

    Toms B A 1948 Proceedings of the 1st International Congress on Rheology North Holland p135

    [2]

    Lumley J L 1969 Annu. Rev. Fluid Mech. 1 367

    [3]

    Hinch E J 1977 Phys. Fluids 20 22

    [4]

    Ryskin G 1987 Phys. Rev. Lett. 59 2059

    [5]

    Tabor M, de Gennes P G 1986 Europhys. Lett. 2 519

    [6]

    Sreenivasan K R, White C M 2000 J. Fluid Mech. 409 149

    [7]

    Dimitropoulos C D, Sureshkumar R, Beris A N, Handler R A 2001 Phys. Fluids 13 1016

    [8]

    De Angelis E, Casciola C M, Piva R 2002 Comput. Fluids 31 495

    [9]

    Chemloul N S 2014 Energy 64 818

    [10]

    Shao X M, Lin J Z, Wu T Li Y L 2002 Can J. Chem Eng 80 293

    [11]

    Kim K, Adrian R J Balachandar S, Sureshkumar R 2008 Phys Rev. Lett 100 134504

    [12]

    Motozawa M, Ishitsuka S, Iwamoto K, Ando H, Senda T, Kawaguchi Y 2012 Flow Turbul. Combust 88 121

    [13]

    Guan X L, Yao S Y, Jiang N 2013 Acta Mech. Sin. 29 485

    [14]

    Kenis P R 1971 J Appl Polym Sci 15 607

    [15]

    Hinze J O (translated by Zhou G J et al.) 1987 Turbulence (Vol.2) (Beijing: Science Press) p298 (in Chinese) [Hinze J O著 (周光炯等译) 1987 湍流 (下册) (北京: 科学出版社) 第298页]

    [16]

    Luchik T S, Tiederman W G 1988 J. Fluid Mech. 190 241

    [17]

    Fan X, Jiang N 2005 Mechanics in Engineering 27 28 (in Chinese) [樊星, 姜楠 2005 力学与实践 27 28]

    [18]

    Robinson S K 1991 Annu. Rev. Fluid Mech. 23 601

    [19]

    Sibilla S, Beretta C P 2005 Fluid Dyn Res 37 183

    [20]

    Cai W H, Li F C, Zhang H N 2011 Chin. Phys. B 20 124702

    [21]

    Li F C, Cai W H, Zhang H N, Wang Y 2012 Chin. Phys. B 21 114701

    [22]

    Kchemann D 1965 J. Fluid Mech. 21 1

    [23]

    Zhou J, Adrian R J, Balachandar S, Kendall T M 1999 J. Fluid Mech. 387 353

    [24]

    Jiang N, Guan X L, Yu P N 2012 Chinese Journal of Theoretical and Applied Mechanics 44 213 (in Chinese) [姜楠, 管新蕾, 于培宁 2012 力学学报 44 213]

    [25]

    Wang W, Guan X L, Jiang N 2014 Chin. Phys. B 23 104703

    [26]

    Adrian R J, Christensen K T, Liu Z C 2000 Exp. Fluids 29 275

    [27]

    Adrian R J, Meinhart C D, Tomkins C D 2000 J. Fluid Mech. 422 1

    [28]

    Willmarth W W, Lu S S 1972 J. Fluid Mech. 55 65

    [29]

    Swearingen J D, Blackwelder R F 1987 J. Fluid Mech. 182 255

    [30]

    Kim K, Li C F, Sureshkumar R, Balachandar S, Adrian R J 2007 J Fluid Mech 584 281

    [31]

    Zhang Z S, Cui G X, Xu C X 2005 Turbulence Theory and Simulation (Beijing: Tsinghua University Press) p17 (in Chinese) [张兆顺, 崔桂香, 许春晓 2005 湍流理论与模拟 (北京: 清华大学出版社) 第17页]

    [32]

    Johansson A V, Alfredsson P H, Kim J 1991 J Fluid Mech 224 579

    [33]

    Zhou J, Adrian R J Balachandar S 1996 Phys. Fluids 8 288

    [34]

    Chen L, Tang D B, Liu C Q 2011 Acta Phys. Sin. 60 094702 (in Chinese) [陈林, 唐登斌, 刘超群 2011 物理学报 60 094702]

    [35]

    Adrian R J 1994 Appl. Sci. Res. 53 291

    [36]

    Tomkins C D, Adrian R J 2003 J. Fluid Mech. 490 37

    [37]

    Christensen K T, Adrian R J 2001 J. Fluid Mech. 431 433

    [38]

    Kline S J, Reynolds W C, Schraub F A, Runstadler P W 1967 J. Fluid Mech. 30 741

    [39]

    White C M, Somandepalli V S R, Mungal M G 2004 Exp. Fluids 36 62

  • [1]

    Toms B A 1948 Proceedings of the 1st International Congress on Rheology North Holland p135

    [2]

    Lumley J L 1969 Annu. Rev. Fluid Mech. 1 367

    [3]

    Hinch E J 1977 Phys. Fluids 20 22

    [4]

    Ryskin G 1987 Phys. Rev. Lett. 59 2059

    [5]

    Tabor M, de Gennes P G 1986 Europhys. Lett. 2 519

    [6]

    Sreenivasan K R, White C M 2000 J. Fluid Mech. 409 149

    [7]

    Dimitropoulos C D, Sureshkumar R, Beris A N, Handler R A 2001 Phys. Fluids 13 1016

    [8]

    De Angelis E, Casciola C M, Piva R 2002 Comput. Fluids 31 495

    [9]

    Chemloul N S 2014 Energy 64 818

    [10]

    Shao X M, Lin J Z, Wu T Li Y L 2002 Can J. Chem Eng 80 293

    [11]

    Kim K, Adrian R J Balachandar S, Sureshkumar R 2008 Phys Rev. Lett 100 134504

    [12]

    Motozawa M, Ishitsuka S, Iwamoto K, Ando H, Senda T, Kawaguchi Y 2012 Flow Turbul. Combust 88 121

    [13]

    Guan X L, Yao S Y, Jiang N 2013 Acta Mech. Sin. 29 485

    [14]

    Kenis P R 1971 J Appl Polym Sci 15 607

    [15]

    Hinze J O (translated by Zhou G J et al.) 1987 Turbulence (Vol.2) (Beijing: Science Press) p298 (in Chinese) [Hinze J O著 (周光炯等译) 1987 湍流 (下册) (北京: 科学出版社) 第298页]

    [16]

    Luchik T S, Tiederman W G 1988 J. Fluid Mech. 190 241

    [17]

    Fan X, Jiang N 2005 Mechanics in Engineering 27 28 (in Chinese) [樊星, 姜楠 2005 力学与实践 27 28]

    [18]

    Robinson S K 1991 Annu. Rev. Fluid Mech. 23 601

    [19]

    Sibilla S, Beretta C P 2005 Fluid Dyn Res 37 183

    [20]

    Cai W H, Li F C, Zhang H N 2011 Chin. Phys. B 20 124702

    [21]

    Li F C, Cai W H, Zhang H N, Wang Y 2012 Chin. Phys. B 21 114701

    [22]

    Kchemann D 1965 J. Fluid Mech. 21 1

    [23]

    Zhou J, Adrian R J, Balachandar S, Kendall T M 1999 J. Fluid Mech. 387 353

    [24]

    Jiang N, Guan X L, Yu P N 2012 Chinese Journal of Theoretical and Applied Mechanics 44 213 (in Chinese) [姜楠, 管新蕾, 于培宁 2012 力学学报 44 213]

    [25]

    Wang W, Guan X L, Jiang N 2014 Chin. Phys. B 23 104703

    [26]

    Adrian R J, Christensen K T, Liu Z C 2000 Exp. Fluids 29 275

    [27]

    Adrian R J, Meinhart C D, Tomkins C D 2000 J. Fluid Mech. 422 1

    [28]

    Willmarth W W, Lu S S 1972 J. Fluid Mech. 55 65

    [29]

    Swearingen J D, Blackwelder R F 1987 J. Fluid Mech. 182 255

    [30]

    Kim K, Li C F, Sureshkumar R, Balachandar S, Adrian R J 2007 J Fluid Mech 584 281

    [31]

    Zhang Z S, Cui G X, Xu C X 2005 Turbulence Theory and Simulation (Beijing: Tsinghua University Press) p17 (in Chinese) [张兆顺, 崔桂香, 许春晓 2005 湍流理论与模拟 (北京: 清华大学出版社) 第17页]

    [32]

    Johansson A V, Alfredsson P H, Kim J 1991 J Fluid Mech 224 579

    [33]

    Zhou J, Adrian R J Balachandar S 1996 Phys. Fluids 8 288

    [34]

    Chen L, Tang D B, Liu C Q 2011 Acta Phys. Sin. 60 094702 (in Chinese) [陈林, 唐登斌, 刘超群 2011 物理学报 60 094702]

    [35]

    Adrian R J 1994 Appl. Sci. Res. 53 291

    [36]

    Tomkins C D, Adrian R J 2003 J. Fluid Mech. 490 37

    [37]

    Christensen K T, Adrian R J 2001 J. Fluid Mech. 431 433

    [38]

    Kline S J, Reynolds W C, Schraub F A, Runstadler P W 1967 J. Fluid Mech. 30 741

    [39]

    White C M, Somandepalli V S R, Mungal M G 2004 Exp. Fluids 36 62

  • [1] 陈蒋力, 陈少强, 任峰, 胡海豹. 基于壁面压力反馈的圆柱绕流减阻智能控制. 物理学报, 2022, 71(8): 084701. doi: 10.7498/aps.71.20212171
    [2] 李山, 姜楠, 杨绍琼. 正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究. 物理学报, 2019, 68(7): 074702. doi: 10.7498/aps.68.20181875
    [3] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [4] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [5] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [6] 郎莎莎, 耿兴国, 臧渡洋. 八重准周期排列的短沟槽结构减阻机理分析. 物理学报, 2014, 63(8): 084704. doi: 10.7498/aps.63.084704
    [7] 王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究. 物理学报, 2014, 63(7): 074702. doi: 10.7498/aps.63.074702
    [8] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [9] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [10] 王晓娜, 耿兴国, 臧渡洋. 一维周期与准周期排列沟槽结构的流体减阻特性研究. 物理学报, 2013, 62(5): 054701. doi: 10.7498/aps.62.054701
    [11] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [12] 张盟, 耿兴国, 张瑶, 王晓娜. 一维短沟槽复合准晶结构减阻效应及模拟分析. 物理学报, 2012, 61(19): 194702. doi: 10.7498/aps.61.194702
    [13] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [14] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [15] 龚博致, 张秉坚. 水中自然超空泡机理及减阻效应的非平衡分子动力学研究. 物理学报, 2009, 58(3): 1504-1509. doi: 10.7498/aps.58.1504
    [16] 高鹏, 耿兴国, 欧修龙, 薛文辉. 人工构建二维准晶复合结构的减阻特性研究. 物理学报, 2009, 58(1): 421-426. doi: 10.7498/aps.58.421
    [17] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [18] 王晓平, 石勤伟. 高聚物薄膜表面堆起结构的变温原子力显微术研究. 物理学报, 2003, 52(3): 656-663. doi: 10.7498/aps.52.656
    [19] 童国平. 导电高聚物中电子转移积分计算. 物理学报, 1994, 43(8): 1326-1330. doi: 10.7498/aps.43.1326
    [20] 万梅香. 导电高聚物的微波吸收机理的研究. 物理学报, 1992, 41(6): 917-923. doi: 10.7498/aps.41.917
计量
  • 文章访问数:  3385
  • PDF下载量:  497
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-19
  • 修回日期:  2014-11-06
  • 刊出日期:  2015-05-05

高聚物减阻溶液对壁湍流输运过程的影响

  • 1. 天津大学机械工程学院力学系, 天津 300072;
  • 2. 天津市现代工程力学重点实验室, 天津 300072;
  • 3. 南开大学天津大学刘徽应用数学中心, 天津 300072
    基金项目: 国家自然科学基金重点项目(批准号: 11332006)、国家自然科学基金(批准号: 11272233)、国家自然科学基金国际合作与交流项目(批准号: 11411130150)和国家重点基础研究发展计划(973计划)(批准号: 2012CB720101, 2012CB720103)资助的课题.

摘要: 基于相同雷诺数下清水和高分子聚合物溶液壁湍流的高时间分辨率粒子图像测速技术(time-resolved particle image velocimetry, TRPIV)的对比实验, 从高聚物溶液对湍流边界层动量能量输运影响的角度分析其减阻的机理. 对比两者的雷诺应力发现高聚物的存在抑制了湍流输运过程. 这一影响与高聚物对壁湍流中占主导地位的涡旋运动和低速条带等相干结构的作用密切相关. 运用条件相位平均、相关函数和线性随机估计(linear stochastic estimation, LSE)等方法, 分析提取了高聚物溶液流场中的发卡涡和发卡涡包等典型相干结构的空间拓扑形态. 相比于清水, 高聚物溶液中相干结构的流向尺度增大, 涡旋运动的发展及低速流体喷射的强度受到削弱, 表明了添加的高聚物阻碍了湍流原有的能量传递和自维持的机理. 正是通过影响相干结构, 高聚物抑制了湍流边界层中近壁区与外区之间的动量和能量输运, 使得湍流的无序性降低, 从而减小了湍流流动的阻力.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回