搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

疏水表面减阻环带实验研究

宋保维 郭云鹤 罗荘竹 徐向辉 王鹰

引用本文:
Citation:

疏水表面减阻环带实验研究

宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰

Investigation about drag reduction annulus experiment of hydrophobic surface

Song Bao-Wei, Guo Yun-He, Luo Zhuang-Zhu, Xu Xiang-Hui, Wang Ying
PDF
导出引用
  • 针对疏水功能材料在流动减阻方面的应用, 选取典型不同粗糙度、不同疏水性的功能涂层表面, 通过新型环带实验研究了其阻力特性, 并获得了相应的扭矩和减阻率曲线. 实验采用测量圆盘带动环带旋转时的扭矩的方法间接计算环带表面所受的摩阻, 突破了传统微管道实验在尺度上的限制, 避免了水洞实验中影响因素过多的弊端, 对疏水材料的宏观应用有着重要意义. 实验证实了在宏观尺度下疏水涂层在低雷诺数时的减阻作用; 但在高雷诺数时, 减阻作用减弱, 甚至部分涂层有增阻作用, 而压差阻力的迅速增大是造成增阻的主要原因. 通过对比分析认为: 低雷诺数时, 疏水特性对于减阻效果影响更大; 而高雷诺数时, 粗糙度起更大作用, 甚至可能起到增阻的反效果.
    For the drag reduction application of hydrophobic material, the drag characteristic of typical surface with different roughness or different hydrophobicity is studied by a new annulus experiment. The corresponding torque characteristic and drag reduction rate curve are acquired. The experiment indirectly calculate the surface friction of the annulus by measuring the torque of disk driving annulus and breaks through the limitation of scale in traditional microchannel experiment, avoids the drawbacks of too many influencing factors in water-tunnel experiment, and has important significance in macro application of hydrophobic material. The drag reduction effect of hydrophobic surface is proved at low Reynolds number in macroscale; however, at high Reynolds number, it will be weakened or even changed to drag producing effect, and the rapid increase of pressure drag is the major reason for increasing resistance. Through comparative analysis we find that at low Reynolds number, there will be greater effect of hydrophobicity for drag reduction; where as at high Reynolds number, the roughness will play a greater role, and may even be counterproductive to the increasing resistance.
    • 基金项目: 国家自然科学基金重点项目(批准号: 50835009);国家自然科学基金 (批准号: 51109178) 和陕西省自然科学基础研究计划(批准号: 2010JQ1009)资助的课题.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50835009), the National Natural Science Foundation of China (Grant No. 51109178), and the Natural Science Basic Research Plan in Shanxi Province of China (Grant No. 2010JQ1009).
    [1]

    Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B 2002 Adv. Mater. 14 1857

    [2]

    Luo Z Z, Zhang Z Z, Hu L T, Liu W M, Guo Z G, Zhang H J, Wang W J 2008 Adv. Mater. 20 970

    [3]

    Zhang M, Geng X G, Zhang Y, Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese) [张盟, 耿兴国, 张瑶, 王晓娜 2012 物理学报 61 194702]

    [4]

    Mei D J, Fan B C, Huang L P, Dong G 2010 Acta Phys. Sin. 59 6786 (in Chinese) [梅栋杰, 范宝春, 黄乐萍, 董刚 2010 物理学报 59 6786]

    [5]

    Saison T, Peroz C, Chauveau V, Berthier S, Sondergard E, Arribart H 2008 Bioinsp. Biomim. 3 046004

    [6]

    Xu F Y, Liu L J, Tan J, Liu B, Mei S 2012 Acta Phys. Chim. Sin. 28 693 (in Chinese) [徐飞燕, 刘丽君, 覃健, 刘贝, 梅双 2012 物理化学学报 28 693]

    [7]

    Wang X L, Liu X J, Zhou F, Liu W M 2011 Chem. Commun. 47 2324

    [8]

    Wang D A, Liu Y, Yu B, Zhou F, Liu W M 2009 Chem. Mater. 21 1198

    [9]

    Tretheway D, Meinhart C 2004 Phys. Fluids 16 1509

    [10]

    Lauga E, Brenner M P, Stone H A 2005 Handbook of Experimental Fluid Dynamics (New York: Springer) Chap. 15

    [11]

    Kevin J, Daniel M, Brent W W 2010 Int. J. Heat Mass Transfer. 53 786

    [12]

    Chiu-On Ng, Henry C W Chu, Wang C Y 2010 Phys. Fluids 22 102002

    [13]

    Ou J, Perot B, Rothstein J P 2004 Phys. Fluids 16 4635

    [14]

    Huang Q G, Pan G, Wu H, Hu H B, Song B W 2011 J. Exp. Fluid Mech. 25 21 (in Chinese) [黄桥高, 潘光, 武昊, 胡海豹, 宋保维 2011 实验流体力学 25 21]

    [15]

    Wang W X, Shi J, Qiu B, Li H B 2010 Acta Phys. Sin. 59 8371 (in Chinese) [王文霞, 施娟, 邱冰, 李华兵 2010 物理学报 59 8371]

    [16]

    Choi C H, Kim C J 2006 Phys. Rev. Lett. 96 066001

  • [1]

    Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B 2002 Adv. Mater. 14 1857

    [2]

    Luo Z Z, Zhang Z Z, Hu L T, Liu W M, Guo Z G, Zhang H J, Wang W J 2008 Adv. Mater. 20 970

    [3]

    Zhang M, Geng X G, Zhang Y, Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese) [张盟, 耿兴国, 张瑶, 王晓娜 2012 物理学报 61 194702]

    [4]

    Mei D J, Fan B C, Huang L P, Dong G 2010 Acta Phys. Sin. 59 6786 (in Chinese) [梅栋杰, 范宝春, 黄乐萍, 董刚 2010 物理学报 59 6786]

    [5]

    Saison T, Peroz C, Chauveau V, Berthier S, Sondergard E, Arribart H 2008 Bioinsp. Biomim. 3 046004

    [6]

    Xu F Y, Liu L J, Tan J, Liu B, Mei S 2012 Acta Phys. Chim. Sin. 28 693 (in Chinese) [徐飞燕, 刘丽君, 覃健, 刘贝, 梅双 2012 物理化学学报 28 693]

    [7]

    Wang X L, Liu X J, Zhou F, Liu W M 2011 Chem. Commun. 47 2324

    [8]

    Wang D A, Liu Y, Yu B, Zhou F, Liu W M 2009 Chem. Mater. 21 1198

    [9]

    Tretheway D, Meinhart C 2004 Phys. Fluids 16 1509

    [10]

    Lauga E, Brenner M P, Stone H A 2005 Handbook of Experimental Fluid Dynamics (New York: Springer) Chap. 15

    [11]

    Kevin J, Daniel M, Brent W W 2010 Int. J. Heat Mass Transfer. 53 786

    [12]

    Chiu-On Ng, Henry C W Chu, Wang C Y 2010 Phys. Fluids 22 102002

    [13]

    Ou J, Perot B, Rothstein J P 2004 Phys. Fluids 16 4635

    [14]

    Huang Q G, Pan G, Wu H, Hu H B, Song B W 2011 J. Exp. Fluid Mech. 25 21 (in Chinese) [黄桥高, 潘光, 武昊, 胡海豹, 宋保维 2011 实验流体力学 25 21]

    [15]

    Wang W X, Shi J, Qiu B, Li H B 2010 Acta Phys. Sin. 59 8371 (in Chinese) [王文霞, 施娟, 邱冰, 李华兵 2010 物理学报 59 8371]

    [16]

    Choi C H, Kim C J 2006 Phys. Rev. Lett. 96 066001

  • [1] 谷靖萱, 郑庭, 郭明帅, 夏冬生, 张会臣. 计入粗糙峰的微纳结构表面水润滑流体动力学仿真. 物理学报, 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [3] 梅涛, 陈占秀, 杨历, 王坤, 苗瑞灿. 纳米通道粗糙内壁对流体流动行为的影响. 物理学报, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [4] 李山, 姜楠, 杨绍琼. 正弦波沟槽对湍流边界层相干结构影响的TR-PIV实验研究. 物理学报, 2019, 68(7): 074702. doi: 10.7498/aps.68.20181875
    [5] 许少锋, 楼应侯, 吴尧锋, 王向垟, 何平. 微通道疏水表面滑移的耗散粒子动力学研究. 物理学报, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [6] 张永建, 叶芳霞, 戴君, 何斌锋, 臧渡洋. 纳米粗糙度对胶体液滴蒸发图案的影响机制. 物理学报, 2017, 66(6): 066101. doi: 10.7498/aps.66.066101
    [7] 管新蕾, 王维, 姜楠. 高聚物减阻溶液对壁湍流输运过程的影响. 物理学报, 2015, 64(9): 094703. doi: 10.7498/aps.64.094703
    [8] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [9] 谷云庆, 牟介刚, 代东顺, 郑水华, 蒋兰芳, 吴登昊, 任芸, 刘福庆. 基于蚯蚓背孔射流的仿生射流表面减阻性能研究. 物理学报, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [10] 李芳, 赵刚, 刘维新, 张殊, 毕红时. 仿生射流孔形状减阻性能数值模拟及实验研究. 物理学报, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [11] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [12] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [13] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [14] 梅栋杰, 范宝春, 黄乐萍, 董刚. 槽道湍流的展向振荡电磁力壁面减阻. 物理学报, 2010, 59(10): 6786-6792. doi: 10.7498/aps.59.6786
    [15] 梅栋杰, 范宝春, 陈耀慧, 叶经方. 槽道湍流展向振荡电磁力控制的实验研究. 物理学报, 2010, 59(12): 8335-8342. doi: 10.7498/aps.59.8335
    [16] 薛伟, 解国新, 王权, 张淼, 郑蓓蓉. 几种微构件材料的表面能及纳观黏附行为研究. 物理学报, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [17] 高鹏, 耿兴国, 欧修龙, 薛文辉. 人工构建二维准晶复合结构的减阻特性研究. 物理学报, 2009, 58(1): 421-426. doi: 10.7498/aps.58.421
    [18] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [19] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究. 物理学报, 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [20] 孙霞, 吴自勤. 规则表面形貌的分形和多重分形描述. 物理学报, 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
计量
  • 文章访问数:  6264
  • PDF下载量:  650
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-12
  • 修回日期:  2013-04-08
  • 刊出日期:  2013-08-05

/

返回文章
返回