搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微通道疏水表面滑移的耗散粒子动力学研究

许少锋 楼应侯 吴尧锋 王向垟 何平

引用本文:
Citation:

微通道疏水表面滑移的耗散粒子动力学研究

许少锋, 楼应侯, 吴尧锋, 王向垟, 何平

Fluid slip over hydrophobic surfaces in microchannels: a dissipative particle dynamics study

Xu Shao-Feng, Lou Ying-Hou, Wu Yao-Feng, Wang Xiang-Yang, He Ping
PDF
HTML
导出引用
  • 了解疏水表面的滑移规律对其在流动减阻方面的应用至关重要. 利用耗散粒子动力学 (dissipative particle dynamics, DPD) 方法研究了微通道疏水表面的滑移现象. 采用固定住的粒子并配合修正的向前反弹机制, 构建了DPD固体壁面边界模型, 利用该边界模型模拟了平板间的Couette流动. 研究结果表明, 通过调整壁面与流体间排斥作用强度, 壁面能实现从无滑移到滑移的转变, 壁面与流体间排斥作用越强, 即疏水性越强, 壁面滑移越明显, 并且滑移长度与接触角之间存在近似的二次函数关系. 无滑移时壁面附近密度分布均匀, 有滑移时壁面附近存在低密度区域, 低密度区域阻碍了动量传递, 致使壁面产生滑移.
    The understanding of fluid slip over a hydrophobic surface is of great importance for reducing the drag for fluid flows. Dissipative particle dynamics (DPD) is used to investigate the mechanism of fluid slip at the solid-fluid interface in microchannels. A wall model adopting three layers of frozen particles is proposed for DPD simulation. In addition, a modified bounce-forward reflection is proposed to reintroduce fluid particles back into the fluid region when they " penetrate” into the wall region in the calculation due to the soft potential employed. Then the Couette flow is simulated by using the proposed wall model. The simulation results show that the no-slip or slip of the fluid at the wall can be achieved by adjusting parameter $ {a_{\rm wf}}$. The parameter $ {a_{wf}}$ represents the interaction between wall particles and liquid particles. Our simulation results show that the distributions of the velocity, density, temperature and shear stress compare well with the corresponding analytical solutions with $ {a_{\rm wf}} = 9.68$, and there is no fluctuation of the fluid density near the wall. This indicates that the no-slip is obtained, and hence the wall is hydrophilic. With ${a_{\rm wf}} > 9.68$, the wall becomes hydrophobic and the fluid can slip at the wall. The wall becomes more hydrophobic with larger ${a_{\rm wf}} $, and the stronger hydrophobicity leads to greater slip. The slip velocity and slip length can be used to describe the fluid slip. According to the Navier slip boundary model, the slip velocity and slip length are determined by fitting a straight line (linear fitting) to the velocity profile in the central portion of the channel. The results show that the slip velocity or the slip length is a quadratic function of the parameter ${a_{\rm wf}} $, namely, the slip velocity or the slip length is a quadratic function of the contact angle. A physical mechanism of the fluid slip over hydrophobic surfaces is also proposed. The density profile is uniform for the no-slip condition, but there is a layer of low density fluid near the wall when the fluid can slip at the wall surface. This low density region can disrupt the momentum transfer between the wall and the fluid, which induces the fluid slip at the wall surface.
      通信作者: 许少锋, 10925066@zju.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51605432)、浙江省自然科学基金青年科学基金(批准号: LQ16E050007, LQ17E050004)和宁波市自然科学基金(批准号: 2015A610097)资助的课题.
      Corresponding author: Xu Shao-Feng, 10925066@zju.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51605432), and the Young Scientists Fund of the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ16E050007, LQ17E050004), and the Natural Science Foundation of Ningbo, China (Grant No. 2015A610097).
    [1]

    Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L 2002 Adv. Mater. 14 1857Google Scholar

    [2]

    Liu K S, Tian Y, Jiang L 2013 Prog. Mater. Sci. 58 503Google Scholar

    [3]

    Rothstein J P 2010 Annu. Rev. Fluid Mech. 42 89Google Scholar

    [4]

    Lauga E, Stone H A 2003 J. Fluid Mech. 489 55Google Scholar

    [5]

    Voronov R S, Papavassiliou D V, Lee L L 2006 J. Chem. Phys. 124 204701Google Scholar

    [6]

    Choi C, Westin K, Breuer K 2003 Phys. Fluids 15 2897Google Scholar

    [7]

    Lee C, Kim C J 2011 Langmuir 27 4243

    [8]

    Tretheway D, Meinhart C 2002 Phys. Fluids 14 9

    [9]

    Bhushan B, Wang Y, Maali A 2009 Langmuir 25 8117Google Scholar

    [10]

    Pit R, Hervet H, Leger L 2000 Phys. Rev. Lett. 85 980Google Scholar

    [11]

    曹炳阳, 陈民, 过增元 2006 物理学报 55 5305Google Scholar

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305Google Scholar

    [12]

    Voronov R S, Papavassiliou D V, Lee L L 2007 Chem. Phys. Lett. 441 273Google Scholar

    [13]

    Voronov R S, Papavassiliou D V, Lee L L 2008 Ind. Eng. Chem. Res. 47 2455Google Scholar

    [14]

    黄桥高, 潘光, 宋保维 2014 物理学报 63 054701Google Scholar

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701Google Scholar

    [15]

    Zhang R L, Di Q F, Wang X L, Ding W P, Gong W 2012 J. Hydrodyn. 24 535Google Scholar

    [16]

    Cupelli C, Henrich B, Glatzel T, Zengerle R, Moseler M, Santer M 2008 New J. Phys. 10 043009Google Scholar

    [17]

    Tretheway D C, Meinhart C D 2004 Phys. Fluids 16 1509Google Scholar

    [18]

    Hoogerbrugge P J, Koelman J M V 1992 Europhys. Lett. 19 155Google Scholar

    [19]

    Espanol P, Warren P B 1995 Europhys. Lett. 30 191Google Scholar

    [20]

    Marsh C 1998 Ph. D Dissertation (Oxford: University of Oxford)

    [21]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 4423Google Scholar

    [22]

    Liu M B, Liu G R, Zhou L W, Chang J Z 2015 Arch. Comput. Meth. Eng. 22 529Google Scholar

    [23]

    Liu M B, Meakin P, Huang H 2007 Phys. Fluids 19 033302Google Scholar

    [24]

    Wang Y, Chen S, Wu B 2017 Comput. Fluids 154 211Google Scholar

    [25]

    Revenga M, Zuniga I, Espanol P 1999 Comput. Phys. Commun. 121 309

    [26]

    Willemsen S, Hoefsloot H, Iedema P 2000 Int. J. Mod. Phys. C 11 881

    [27]

    Fan X J, Phan-Thien N, Yong N T, Wu X H, Xu D 2003 Phys. Fluids 15 11Google Scholar

    [28]

    Duong-Hong D, Phan-Thien N, Fan X 2004 Comput. Mech. 35 24Google Scholar

    [29]

    Pivkin I V, Karniadakis G E 2005 J. Comput. Phys. 207 114Google Scholar

    [30]

    Chen S, Phan-Thien N, Khoo B C, Fan X J 2006 Phys. Fluids 18 103605Google Scholar

    [31]

    刘谋斌, 常建忠 2010 物理学报 59 7556Google Scholar

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 7556Google Scholar

    [32]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (Cambridge, UK: Cambridge University Press) p49-p60

    [33]

    Liu M B, Chang J Z, Liu H T, Su T X 2011 Int. J. Comput. Meth. 8 637Google Scholar

    [34]

    Pivkin I V, Karniadakis G E 2006 Phys. Rev. Lett. 96 206001Google Scholar

    [35]

    Fedosov D A, Pivkin I V, Karniadakis G E 2008 J. Comput. Phys. 227 2540Google Scholar

  • 图 1  固体壁面结构示意图

    Fig. 1.  Sketch of the solid wall structure.

    图 2  修正的向前反弹机制

    Fig. 2.  Sketch of the modified bounce-forward reflection.

    图 3  模拟系统示意图

    Fig. 3.  Sketch of simulation system of Couette flow.

    图 4  壁面边界的无滑移和部分滑移示意图

    Fig. 4.  No-slip and partial slip status at a solid-fluid interface

    图 5  DPD模拟的速度分布与Navier-Stokes(NS)分析解对比

    Fig. 5.  The velocity profile of DPD simulation result compares to the analytical solution.

    图 6  DPD模拟的密度、温度分布与Navier-Stokes(NS)分析解对比

    Fig. 6.  The density and temperature profiles of DPD simulation results compare to the analytical solutions.

    图 7  DPD模拟的剪切应力分布与分析解对比

    Fig. 7.  The shear stress profile of DPD simulation result compares to the analytical solution.

    图 8  排斥力系数${a_{{\rm{wf}}}}$分别为9.68, 13.69, 16.77, 19.36, 21.65时的速度分布

    Fig. 8.  Velocity distributions due to different values of ${a_{{\rm{wf}}}} = 9.68,{\kern 1pt} {\kern 1pt} 13.69,{\kern 1pt} {\kern 1pt} 16.77,{\kern 1pt} {\kern 1pt} 19.36,{\kern 1pt} {\kern 1pt} 21.65$.

    图 9  滑移速度${u_{\rm{s}}}$与排斥力系数${a_{{\rm{wf}}}}$的关系

    Fig. 9.  Slip velocity versus ${a_{{\rm{wf}}}}$.

    图 10  滑移长度b与排斥力系数${a_{{\rm{wf}}}}$的关系

    Fig. 10.  Slip length versus ${a_{{\rm{wf}}}}$.

    图 11  不同排斥力系数时和无滑移时的密度分布

    Fig. 11.  The density profiles for different ${a_{{\rm{wf}}}}$ values and for no slip condition.

    表 1  不同排斥力系数${a_{\rm wf}}$时拟合的速度分布及对应的滑移速度和滑移长度

    Table 1.  The linear fit velocity profiles, slip velocity and slip length with respect to different ${a_{\rm wf}}$.

    ${a_{\rm wf}}$拟合的速度直线滑移速度滑移长度
    13.69${v_x} = 0.1936z - 0.0009$0.09510.4912
    16.77${v_x} = 0.1864z - 0.0036$0.20041.0751
    19.36${v_x} = 0.1778z + 0.0044$0.33741.8976
    21.65${v_x} = 0.1691z + 0.0002$0.46372.7422
    9.68(无滑移)${v_x} = 0.2z$(理论解)00
    下载: 导出CSV
  • [1]

    Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L 2002 Adv. Mater. 14 1857Google Scholar

    [2]

    Liu K S, Tian Y, Jiang L 2013 Prog. Mater. Sci. 58 503Google Scholar

    [3]

    Rothstein J P 2010 Annu. Rev. Fluid Mech. 42 89Google Scholar

    [4]

    Lauga E, Stone H A 2003 J. Fluid Mech. 489 55Google Scholar

    [5]

    Voronov R S, Papavassiliou D V, Lee L L 2006 J. Chem. Phys. 124 204701Google Scholar

    [6]

    Choi C, Westin K, Breuer K 2003 Phys. Fluids 15 2897Google Scholar

    [7]

    Lee C, Kim C J 2011 Langmuir 27 4243

    [8]

    Tretheway D, Meinhart C 2002 Phys. Fluids 14 9

    [9]

    Bhushan B, Wang Y, Maali A 2009 Langmuir 25 8117Google Scholar

    [10]

    Pit R, Hervet H, Leger L 2000 Phys. Rev. Lett. 85 980Google Scholar

    [11]

    曹炳阳, 陈民, 过增元 2006 物理学报 55 5305Google Scholar

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305Google Scholar

    [12]

    Voronov R S, Papavassiliou D V, Lee L L 2007 Chem. Phys. Lett. 441 273Google Scholar

    [13]

    Voronov R S, Papavassiliou D V, Lee L L 2008 Ind. Eng. Chem. Res. 47 2455Google Scholar

    [14]

    黄桥高, 潘光, 宋保维 2014 物理学报 63 054701Google Scholar

    Huang Q G, Pan G, Song B W 2014 Acta Phys. Sin. 63 054701Google Scholar

    [15]

    Zhang R L, Di Q F, Wang X L, Ding W P, Gong W 2012 J. Hydrodyn. 24 535Google Scholar

    [16]

    Cupelli C, Henrich B, Glatzel T, Zengerle R, Moseler M, Santer M 2008 New J. Phys. 10 043009Google Scholar

    [17]

    Tretheway D C, Meinhart C D 2004 Phys. Fluids 16 1509Google Scholar

    [18]

    Hoogerbrugge P J, Koelman J M V 1992 Europhys. Lett. 19 155Google Scholar

    [19]

    Espanol P, Warren P B 1995 Europhys. Lett. 30 191Google Scholar

    [20]

    Marsh C 1998 Ph. D Dissertation (Oxford: University of Oxford)

    [21]

    Groot R D, Warren P B 1997 J. Chem. Phys. 107 4423Google Scholar

    [22]

    Liu M B, Liu G R, Zhou L W, Chang J Z 2015 Arch. Comput. Meth. Eng. 22 529Google Scholar

    [23]

    Liu M B, Meakin P, Huang H 2007 Phys. Fluids 19 033302Google Scholar

    [24]

    Wang Y, Chen S, Wu B 2017 Comput. Fluids 154 211Google Scholar

    [25]

    Revenga M, Zuniga I, Espanol P 1999 Comput. Phys. Commun. 121 309

    [26]

    Willemsen S, Hoefsloot H, Iedema P 2000 Int. J. Mod. Phys. C 11 881

    [27]

    Fan X J, Phan-Thien N, Yong N T, Wu X H, Xu D 2003 Phys. Fluids 15 11Google Scholar

    [28]

    Duong-Hong D, Phan-Thien N, Fan X 2004 Comput. Mech. 35 24Google Scholar

    [29]

    Pivkin I V, Karniadakis G E 2005 J. Comput. Phys. 207 114Google Scholar

    [30]

    Chen S, Phan-Thien N, Khoo B C, Fan X J 2006 Phys. Fluids 18 103605Google Scholar

    [31]

    刘谋斌, 常建忠 2010 物理学报 59 7556Google Scholar

    Liu M B, Chang J Z 2010 Acta Phys. Sin. 59 7556Google Scholar

    [32]

    Rapaport D C 2004 The Art of Molecular Dynamics Simulation (Cambridge, UK: Cambridge University Press) p49-p60

    [33]

    Liu M B, Chang J Z, Liu H T, Su T X 2011 Int. J. Comput. Meth. 8 637Google Scholar

    [34]

    Pivkin I V, Karniadakis G E 2006 Phys. Rev. Lett. 96 206001Google Scholar

    [35]

    Fedosov D A, Pivkin I V, Karniadakis G E 2008 J. Comput. Phys. 227 2540Google Scholar

  • [1] 王凯宇, 庞祥龙, 李晓光. 超疏水表面液滴的振动特性及其与液滴体积的关系. 物理学报, 2021, 70(7): 076801. doi: 10.7498/aps.70.20201771
    [2] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [3] 杨颖, 宋俊杰, 万明威, 高靓辉, 方维海. 分子层次的金纳米棒-表面活性剂-磷脂自组装复合体形貌. 物理学报, 2020, 69(24): 248701. doi: 10.7498/aps.69.20200979
    [4] 林晨森, 陈硕, 肖兰兰. 适用复杂几何壁面的耗散粒子动力学边界条件. 物理学报, 2019, 68(14): 140204. doi: 10.7498/aps.68.20190533
    [5] 胡海豹, 王德政, 鲍路瑶, 文俊, 张招柱. 基于润湿阶跃的水下大尺度气膜封存方法. 物理学报, 2016, 65(13): 134701. doi: 10.7498/aps.65.134701
    [6] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [7] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [8] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [9] 林晨森, 陈硕, 李启良, 杨志刚. 耗散粒子动力学GPU并行计算研究. 物理学报, 2014, 63(10): 104702. doi: 10.7498/aps.63.104702
    [10] 王宝, 汪家道, 陈大融. 基于微空泡效应的疏水性展向微沟槽表面水下减阻研究. 物理学报, 2014, 63(7): 074702. doi: 10.7498/aps.63.074702
    [11] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [12] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟. 物理学报, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [13] 许少锋, 汪久根. 微通道中高分子溶液Poiseuille流的耗散粒子动力学模拟. 物理学报, 2013, 62(12): 124701. doi: 10.7498/aps.62.124701
    [14] 宋保维, 郭云鹤, 罗荘竹, 徐向辉, 王鹰. 疏水表面减阻环带实验研究. 物理学报, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [15] 常建忠, 刘汉涛, 刘谋斌, 苏铁熊. 介观尺度流体绕流球体的耗散粒子动力学模拟. 物理学报, 2012, 61(6): 064704. doi: 10.7498/aps.61.064704
    [16] 刘谋斌, 常建忠. 耗散粒子动力学处理复杂固体壁面的一种有效方法. 物理学报, 2010, 59(11): 7556-7563. doi: 10.7498/aps.59.7556
    [17] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟. 物理学报, 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [18] 张敏梁, 田煜, 蒋继乐, 孟永钢, 温诗铸. 极板形貌修饰对电流变液/极板界面滑移抑制实验研究. 物理学报, 2009, 58(12): 8394-8399. doi: 10.7498/aps.58.8394
    [19] 武宏宇, 尹 澜. 超流费米气体相滑移时的密度分布. 物理学报, 2006, 55(2): 490-493. doi: 10.7498/aps.55.490
    [20] 钱临照;何寿安. 在铝晶体表面上刻纹所导致的滑移的特征. 物理学报, 1956, 12(6): 647-650. doi: 10.7498/aps.12.647
计量
  • 文章访问数:  5243
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-12
  • 修回日期:  2019-02-17
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回