搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于壁面压力反馈的圆柱绕流减阻智能控制

陈蒋力 陈少强 任峰 胡海豹

引用本文:
Citation:

基于壁面压力反馈的圆柱绕流减阻智能控制

陈蒋力, 陈少强, 任峰, 胡海豹

Artificially intelligent control of drag reduction around a circular cylinder based on wall pressure feedback

Chen Jiang-Li, Chen Shao-Qiang, Ren Feng, Hu Hai-Bao
PDF
HTML
导出引用
  • 针对经典圆柱绕流问题, 采用深度强化学习方法, 提出了基于壁面压力反馈的圆柱绕流减阻闭环主动控制方法, 并比较分析了施加控制前后圆柱阻力系数、升力系数及流场的差异. 控制系统中, 以圆柱壁面上均匀分布的压力探针测得的信号作为反馈, 利用多层感知机建立压强信号与吹/吸射流及控制效果的映射关系, 即控制策略; 通过在圆柱上下表面狭缝施加连续可调的吹/吸射流来进行主动控制. 同时, 利用深度强化学习中的近端策略优化方法, 在大量的学习过程中对该控制策略进行不断调整和优化, 以实现稳定减阻效果. 在圆柱绕流流动环境搭建方面, 采用格子Boltzmann方法建立与深度强化学习模型之间的交互式框架, 模拟提取非定常流场条件下圆柱表面的压强信号, 并计算实时调整吹/吸射流强度时圆柱表面升力、阻力数据, 以评估所选控制策略的优劣. 研究表明: 雷诺数为100时, 主动控制策略能减少约4.2%的圆柱阻力, 同时减少约49%升力幅度; 同时施加主动控制后圆柱的减阻效果与圆柱回流区长度呈现强相关趋势. 此外, 不同雷诺数下智能体习得的策略减阻效果不同, 雷诺数为200和400时, 该主动控制策略能依次减小圆柱阻力17.3%和31.6%. 本研究可为后续开展基于壁面压力反馈的圆柱流动主动控制实验以及其他复杂环境下钝体流动智能控制提供参考.
    Focusing on the typical problem of flow around a circular cylinder, we propose an active flow control method of reducing drag of a circular cylinder, in which a deep reinforcement learning (DRL) method is used to establish the closed-loop control strategy with pressure sensors providing feedback signals. The detailed comparisons of the lift, drag, and flow fields with and without control are conducted. In the control system, pressure sensors evenly distributed on the cylinder surface are used to provide feedback signals for the controller. The multilayer perceptron is adopted to establish the mapping relationship between the sensors and the blowing/suction jets, i.e. the control strategy. A pair of continuously adjustable synthetic jets that exert transverse force mainly on the top and bottom edge of the cylinder is implemented. Based on the state-of-the-art proximal policy optimization algorithm, the control strategy is explored and optimized during a large number of learning episodes, thus achieving an effective, efficient, and robust drag reduction strategy. To build up the high-fidelity numerical environment, we adopt the lattice Boltzmann method as a core solver, which, together with the DRL agent, establishes an interactive framework. Furthermore, the surface pressure signals are extracted during the unsteady simulation to adjust the real-time blowing/suction jets intensity. The lift information and the drag information are recorded to evaluate the performance of the current control strategy. Results show that the active control strategy learnt by the DRL agent can reduce the drag by about 4.2% and the lift amplitude by about 49% at Reynolds number 100. A strong correlation between the drag reduction effect of the cylinder and the elongated recirculation bubble is noted. In addition, the drag reduction rate varies over a range of Reynolds numbers. The active control strategy is able to reduce the drag by 17.3% and 31.6% at Reynolds number 200 and 400, respectively. Owing to the fact that wall pressure signals are easy to measure in realistic scenarios, this study provides valuable reference for experimentally designing the active flow control of a circular cylinder based on wall pressure signals and intelligent control in more complicated flow environments.
      通信作者: 任峰, renfeng@nwpu.edu.cn ; 胡海豹, huhaibao@nwpu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 52071272, 12102357)、基础前沿项目(批准号: JCKY2018*18)、中央高校基本科研业务费(批准号: 3102021HHZY030002)、陕西省自然科学基础研究计划 (批准号: 2020JC-18)、河南省水下智能装备重点实验室开放基金(批准号: KL01B2101)和国家超级计算郑州中心首批创新生态系统建设科技专项(批准号: 201400211100)资助的课题.
      Corresponding author: Ren Feng, renfeng@nwpu.edu.cn ; Hu Hai-Bao, huhaibao@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52071272, 12102357), the Basic Frontier Project, China (Grant No. JCKY2018*18), the Fundamental Research Funds for the Central Universities, China (Grant No. 3102021HHZY030002), the Natural Science Basic Research Program of Shanxi, China (Grant No. 2020JC-18), the Open Fund of Henan Key Laboratory of Underwater Intelligent Equipment, China (Grant No. KL01B2101), and the Science and Technology Projects for Innovation Ecosystem Construction by the National Supercomputing Center in Zhengzhou, China (Grant No. 201400211100).
    [1]

    任峰, 高传强, 唐辉 2021 航空学报 42 524686Google Scholar

    Ren F, Gao C Q, Tang H 2021 Acta Aeronaut. Astronaut. Sin 42 524686Google Scholar

    [2]

    Brunton S L, Noack B R 2015 Appl. Mech. Rev. 67 050801Google Scholar

    [3]

    Li R, Noack B R, Cordier L, Borée J 2017 Exp. Fluids 58 1Google Scholar

    [4]

    Schoppa W, Hussain F 1998 Phys. Fluids 10 1049Google Scholar

    [5]

    Duriez T, Brunton S L, Noack B R 2017 Machine learning control-taming nonlinear dynamics and turbulence (Cham, Switzerland: Springer International Publishing) pp1–229

    [6]

    Ren F, Hu H B, Tang H 2020 J. Hydrodyn. 32 247Google Scholar

    [7]

    Rabault J, Kuchta M, Jensen A, Réglade U, Cerardi N 2019 J. Fluid Mech. 865 281Google Scholar

    [8]

    Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O 2017 arXiv: 1707.06347

    [9]

    Paris R, Beneddine S, Dandois J 2021 J. Fluid Mech. 913 A25Google Scholar

    [10]

    Ren F, Rabault J, Tang H 2021 Phys. Fluids 33 037121Google Scholar

    [11]

    Ren F, Song B, Zhang Y, Hu H 2018 Comput. Fluids. 173 29Google Scholar

    [12]

    Rabault J, Kuhnle A 2019 Phys. Fluids 31 094105Google Scholar

    [13]

    郭照立 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第9—14页

    Guo Z L, Zhen C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp 9–14 (In Chinese)

    [14]

    何雅玲, 王勇, 李庆 2009 格子 Boltzmann 方法的理论及应用 (北京: 科学出版社) 第5—79页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Application (Beijing: Science Press) pp5–79 (In Chinese)

    [15]

    Qian Y H, D'Humières D, Lallemand P 1992 Europhys. Lett 17 479Google Scholar

    [16]

    D'Humières D 1992 AIAA J. 159 450

    [17]

    D'Humières D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. Roy. Soc. A 360 437Google Scholar

    [18]

    He X, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [19]

    Guo Z L, Zhen C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [20]

    Ziegler D P 1993 J. Stat. Phys. 71 1171Google Scholar

    [21]

    Yu D, Mei R, Luo L S, Shyy W 2003 Prog. Aeosp. Sci 39 329Google Scholar

    [22]

    Chen Y, Cai Q, Xia Z, Wang M, Chen S 2013 Phys. Rev. E 88 013303Google Scholar

    [23]

    Tang H, Rabault J, Kuhnle A, Kuhnle A, Wang Y, Wang T 2020 Phys. Fluids 32 053605Google Scholar

    [24]

    Schäfer M, Turek S, Durst F, Krause E 1997 Flow Simulation with High-Performance Computers II (Wiesbaden: Vieweg+Teubner Verlag) pp547–566

    [25]

    Van Hasselt H, Guez A, Silver D 2016 Proceedings of the AAAI conference on artificial intelligence Phoenix, Germany, February 12–17, 2016 p2094

    [26]

    Tiwari A, Vanka S P 2012 Int. J. Numer. Methods Fluids 69 481Google Scholar

    [27]

    Protas B, Wesfreid J 2002 Phys. Fluids 14 810Google Scholar

    [28]

    Bergmann M, Cordier L, Brancher J P 2005 Phys. Fluids 17 097101Google Scholar

    [29]

    Coutanceau M, Bouard R 1977 J. Fluid Mech. 79 231Google Scholar

  • 图 1  物理模型示意图

    Fig. 1.  Schematics of the physical model.

    图 2  智能体训练过程(速度反馈)

    Fig. 2.  Learning curves of DRL agent (velocity feedback).

    图 3  控制前后阻力系数(CD)随时间变化图

    Fig. 3.  Temporal variations of drag coefficient (CD) with and without active flow control.

    图 4  压力探针位置图 (a) 6个压力探针; (b) 14个压力探针; (c) 30个压力探针

    Fig. 4.  Schematics of the pressure sensors position: (a) 6 pressure sensors; (b) 14 pressure sensors; (c) 30 pressure sensors.

    图 5  圆柱压力分布曲线, Re = 20

    Fig. 5.  Pressure distribution curve along the cylinder surface, Re = 20.

    图 6  智能体训练过程(压力反馈)

    Fig. 6.  Learning curves of DRL agent (wall pressure feedback).

    图 7  主动控制和无控制下圆柱的阻力系数(CD), 升力系数(CL)和射流速度(Ujet)变化曲线, Re = 100

    Fig. 7.  Temporal variations of drag coefficient (CD), lift coefficient (CL), and jet velocity (Ujet) with and without active control, Re = 100.

    图 8  Re = 100时的瞬时流场云图(a1)—(d1)无控制下流向速度, 横向速度, 压力及涡量云图; (a2)—(d2)主动控制下流向速度, 横向速度, 压力及涡量云图

    Fig. 8.  Instantaneous contours of flow fields at Re = 100: (a1)–(d1) Contours of streamwise velocity, transverse velocity, pressure, and vorticity without active control; (a2)–(d2) contours of streamwise velocity, transverse velocity, pressure, and vorticity with active control.

    图 9  Re = 100时的时均流场云图 (a1)—(c1)无控制下流向速度, 横向速度及压力云图; (a2)—(c2)主动控制下流向速度, 横向速度及压力云图

    Fig. 9.  Time-averaged contours of flow fields at Re = 100: (a1)–(c1) Contours of streamwise velocity, spanwise velocity, pressure, and vorticity without active control; (a2)–(c2) contours of streamwise velocity, spanwise velocity, and pressure with active control.

    图 10  主动控制与无控制下的圆柱阻力系数(CD), 升力系数(CL)和射流速度(Ujet)变化曲线

    Fig. 10.  Time-resolved value of drag coefficient (CD), lift coefficient (CL), and jet velocity (Ujet) with and without control.

    图 11  无控制下和施加主动控制下的时均流向速度云图 (a1) Re = 200, 无控制; (a2) Re = 200, 施加控制; (b1) Re = 400, 无控制; (B2) Re = 400, 施加控制

    Fig. 11.  Time-averaged streamwise velocity fields without control and with active control: (a1) Re = 200, without control; (a2) Re = 200, with control; (b1) Re = 400, without control; (b2) Re = 400, with control.

    表 1  无关性验证(Re = 100)

    Table 1.  Validation and convergence study (Re = 100).

    MeshT/δt$ \overline {{C_{\text{D}}}} $$ \overline {\left| {{C_{\text{L}}}} \right|} $Sr
    768×14410003.1920.6120.3026
    1536×28820003.2010.6390.3019
    3072×57640003.2010.6400.3012
    下载: 导出CSV

    表 2  Re = 100时最大升阻力系数CD,max, CL,maxSr对比

    Table 2.  Comparison of CD,max, CL,max and Sr at Re = 100

    Ref.MeshT/δtCD, maxCL, maxSr
    Present1536×28820003.2451.0200.302
    Rabault et al.[7]926220003.2430.9990.300
    Tang et al.[23]258653.2301.0320.302
    Schäfer et al.[24]3.220
    ~3.240
    0.990
    ~1.010
    0.295
    ~0.305
    下载: 导出CSV
  • [1]

    任峰, 高传强, 唐辉 2021 航空学报 42 524686Google Scholar

    Ren F, Gao C Q, Tang H 2021 Acta Aeronaut. Astronaut. Sin 42 524686Google Scholar

    [2]

    Brunton S L, Noack B R 2015 Appl. Mech. Rev. 67 050801Google Scholar

    [3]

    Li R, Noack B R, Cordier L, Borée J 2017 Exp. Fluids 58 1Google Scholar

    [4]

    Schoppa W, Hussain F 1998 Phys. Fluids 10 1049Google Scholar

    [5]

    Duriez T, Brunton S L, Noack B R 2017 Machine learning control-taming nonlinear dynamics and turbulence (Cham, Switzerland: Springer International Publishing) pp1–229

    [6]

    Ren F, Hu H B, Tang H 2020 J. Hydrodyn. 32 247Google Scholar

    [7]

    Rabault J, Kuchta M, Jensen A, Réglade U, Cerardi N 2019 J. Fluid Mech. 865 281Google Scholar

    [8]

    Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O 2017 arXiv: 1707.06347

    [9]

    Paris R, Beneddine S, Dandois J 2021 J. Fluid Mech. 913 A25Google Scholar

    [10]

    Ren F, Rabault J, Tang H 2021 Phys. Fluids 33 037121Google Scholar

    [11]

    Ren F, Song B, Zhang Y, Hu H 2018 Comput. Fluids. 173 29Google Scholar

    [12]

    Rabault J, Kuhnle A 2019 Phys. Fluids 31 094105Google Scholar

    [13]

    郭照立 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第9—14页

    Guo Z L, Zhen C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) pp 9–14 (In Chinese)

    [14]

    何雅玲, 王勇, 李庆 2009 格子 Boltzmann 方法的理论及应用 (北京: 科学出版社) 第5—79页

    He Y L, Wang Y, Li Q 2009 Lattice Boltzmann Method: Theory and Application (Beijing: Science Press) pp5–79 (In Chinese)

    [15]

    Qian Y H, D'Humières D, Lallemand P 1992 Europhys. Lett 17 479Google Scholar

    [16]

    D'Humières D 1992 AIAA J. 159 450

    [17]

    D'Humières D, Ginzburg I, Krafczyk M, Lallemand P, Luo L S 2002 Philos. Trans. Roy. Soc. A 360 437Google Scholar

    [18]

    He X, Luo L S 1997 J. Stat. Phys. 88 927Google Scholar

    [19]

    Guo Z L, Zhen C G, Shi B C 2002 Chin. Phys. 11 366Google Scholar

    [20]

    Ziegler D P 1993 J. Stat. Phys. 71 1171Google Scholar

    [21]

    Yu D, Mei R, Luo L S, Shyy W 2003 Prog. Aeosp. Sci 39 329Google Scholar

    [22]

    Chen Y, Cai Q, Xia Z, Wang M, Chen S 2013 Phys. Rev. E 88 013303Google Scholar

    [23]

    Tang H, Rabault J, Kuhnle A, Kuhnle A, Wang Y, Wang T 2020 Phys. Fluids 32 053605Google Scholar

    [24]

    Schäfer M, Turek S, Durst F, Krause E 1997 Flow Simulation with High-Performance Computers II (Wiesbaden: Vieweg+Teubner Verlag) pp547–566

    [25]

    Van Hasselt H, Guez A, Silver D 2016 Proceedings of the AAAI conference on artificial intelligence Phoenix, Germany, February 12–17, 2016 p2094

    [26]

    Tiwari A, Vanka S P 2012 Int. J. Numer. Methods Fluids 69 481Google Scholar

    [27]

    Protas B, Wesfreid J 2002 Phys. Fluids 14 810Google Scholar

    [28]

    Bergmann M, Cordier L, Brancher J P 2005 Phys. Fluids 17 097101Google Scholar

    [29]

    Coutanceau M, Bouard R 1977 J. Fluid Mech. 79 231Google Scholar

  • [1] 罗仕超, 吴里银, 胡守超, 龚红明, 吕明磊, 孔小平. 壁面催化对高温非平衡流场磁控效果影响分析. 物理学报, 2025, 74(2): 024701. doi: 10.7498/aps.74.20241307
    [2] 张震, 易仕和, 刘小林, 陈世康, 张臻. 高超声速条件下凸曲率壁面混合层的流动演化. 物理学报, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [3] 季梦, 尤云祥, 韩盼盼, 邱小平, 马乔, 吴凯健. 亚临界区圆柱绕流相干结构壁面模化混合RANS/LES模型. 物理学报, 2024, 73(5): 054701. doi: 10.7498/aps.73.20231745
    [4] 宋健, 任峰, 胡海豹, 陈效鹏. 合成射流对层流状态下圆柱辐射噪声的影响. 物理学报, 2023, 72(4): 044702. doi: 10.7498/aps.72.20221879
    [5] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型. 物理学报, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [6] 战庆亮, 白春锦, 葛耀君. 基于时程深度学习的复杂流场流动特性表征方法. 物理学报, 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [7] 黄亚冬, 王智河, 周本谋. 圆柱绕流尾迹转捩电磁力控制研究. 物理学报, 2022, 71(22): 224702. doi: 10.7498/aps.71.20221357
    [8] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性. 物理学报, 2020, 69(21): 214401. doi: 10.7498/aps.69.20201000
    [9] 张烨, 张冉, 常青, 李桦. 壁面效应对纳米尺度气体流动的影响规律研究. 物理学报, 2019, 68(12): 124702. doi: 10.7498/aps.68.20190248
    [10] 程霄翔, 赵林, 葛耀君. 高超临界雷诺数区间内二维圆柱绕流的实测研究. 物理学报, 2016, 65(21): 214701. doi: 10.7498/aps.65.214701
    [11] 王祥, 钞润泽, 管仁国, 李元东, 刘春明. 金属熔体近壁面流动剪切模型及其对金属凝固影响的理论研究. 物理学报, 2015, 64(11): 116601. doi: 10.7498/aps.64.116601
    [12] 陈耀慧, 董祥瑞, 陈志华, 张辉, 栗保明, 范宝春. 翼型绕流的洛伦兹力控制机理. 物理学报, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [13] 尹纪富, 尤云祥, 李巍, 胡天群. 电磁力控制湍流边界层分离圆柱绕流场特性数值分析. 物理学报, 2014, 63(4): 044701. doi: 10.7498/aps.63.044701
    [14] 陈蓥, 付世晓, 许玉旺, 周青, 范迪夏. 均匀流中近壁面垂直流向振荡圆柱水动力特性研究. 物理学报, 2013, 62(6): 064701. doi: 10.7498/aps.62.064701
    [15] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究. 物理学报, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [16] 陈耀慧, 范宝春, 陈志华, 周本谋. 翼型绕流电磁控制的实验和数值研究. 物理学报, 2008, 57(2): 648-653. doi: 10.7498/aps.57.648
    [17] 朱伦武, 翁甲强, 高远, 方锦清. 强流加速器中束晕-混沌的延迟反馈控制. 物理学报, 2002, 51(7): 1483-1488. doi: 10.7498/aps.51.1483
    [18] 高远, 翁甲强, 方锦清, 罗晓曙. 强流加速器中束晕-混沌的小波间隔反馈控制. 物理学报, 2001, 50(8): 1440-1446. doi: 10.7498/aps.50.1440
    [19] 方锦清, 高远, 翁甲强, 罗晓曙, 陈关荣. 小波函数反馈法实现对强流束晕混沌的有效控制. 物理学报, 2001, 50(3): 435-439. doi: 10.7498/aps.50.435
    [20] 严济慈, 方声恒. 空心水晶圆柱之绕周振动. 物理学报, 1936, 2(2): 145-153. doi: 10.7498/aps.2.145
计量
  • 文章访问数:  6237
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-25
  • 修回日期:  2021-12-16
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回