-
对均匀来流下靠近壁面处在垂直流向做强迫振荡运动的光滑圆柱的水动力特性进行了试验研究. 试验在拖曳水池中进行, 雷诺数为2× 105, 通过采集顺流向和垂直流向的力, 得到了阻力系数、升力系数、相位角等与间隙比、振荡频率和振幅之间的关系. 通过研究得到如下结论: 1)振荡圆柱的平均阻力系数在近壁面处随间隙比的减小而骤降; 2)振荡圆柱泄涡受到完全抑制的临界间隙比要小于静止圆柱; 3)近壁面的存在对振荡圆柱的能量传递有着重要的影响, 自由边界圆柱强迫振荡所得到的水动力系数不能用来预报海底管道的涡激振动; 4)对于振荡圆柱, 附加质量系数只有在一定的频率范围内才是定值, 且在低频率区域其绝对值随间隙比减小而增大; 5)圆柱在进行强迫振荡时, 其平均阻力系数、振荡阻力系数和振荡升力系数均随无因次振幅的增加而增大.Hydrodynamic characteristics of a near-wall circular cylinder oscillating in direction perpendicular to steady current are experimentally investigated at a Reynolds number of 2× 105. Forces in both in-line and cross-flow are measured by the three-dimensional force transducers. The effects of gap ratio, oscillating frequency and amplitude on the hydrodynamic charactersistic of the cylinder are studied. Experimental results indicate that 1) mean drag reduces rapidly when the gap ratio decreases from 0.7 to 0.3; 2) for an oscillating cylinder, the critical gap ratio of vortex shedding suppression is smaller than that for a still cylinder; 3) the existence of near-wall influences the energy transfer between the structure and fluid significantly, which means that hydrodynamic coefficient based on free-wall cylinder may not be suitble for predicting vortex induced vibration of pipelines; 4) for an oscillating cylinder, added mass is not a constant except for in a certain range of oscillating frequency, and the absolute value increases with the decrease of gap ratio in low frequency range; 5) mean drag coefficient, oscillating drag coefficient and oscillating lift coefficient all increase with oscillating amplitude increasing.
-
Keywords:
- pipeline /
- forced oscillating /
- hydrodynamic characters /
- vortex induced vibration
[1] Sarpkaya T 2004 J. Fluid Struct. 19 389
[2] Naudascher E 1987 J. Fluid Struct. 1 265
[3] Chen Z H, Fan B C, Zhou B M, Li H Z 2007 Chin. Phys. Soc. 16 1077
[4] Xia Y, Lu D T, Liu Y, Xu Y S 2009 Chin. Phys. Lett. 26 034702
[5] Xu W H, Du J, Yu J X, Li J C 2011 Chin. Phys. Lett. 28 124704
[6] Zdravkovich M M 1985 Appl. Ocean Res. 7 197
[7] Hiwada M, Mabuchi I, Kumada M, Iwakoshi H 1986 Trans. Jpn. Soc. Mech. Eng. B 52 25
[8] Buresti G, Lanciotti A 1992 J. Wind Eng. Ind. Aerodyn. 41 639
[9] Lei C, Cheng L, Kavanagh K 1999 J. Wind Eng. Ind. Aerodyn. 80 263
[10] Nishino T, Roberts G T, Zhang X 2007 Phys. Fluids 19 025103
[11] Bearman P W, Zdravkovich M M 1978 J. Fluid Mech. 89 33
[12] Grass A J, Raven P W J, Stuart R J, Bray J A 1984 J. Energ Resour-ASME 106 70
[13] Bishop R E D, Hassan A Y 1964 Proc. Roy. Soc. Lond. A 277 51
[14] Williamson C H K, Roshko A 1988 J. Fluid Struct. 2 355
[15] Sarpkaya T 1978 ASCE J. Waterway Port Coast. Ocean Div. 104 275
[16] Gopalkrishnan R 1993 Ph. D. Dissertation (Cambridge, MA, USA: MIT)
[17] Sumer B M, Fredsoe J, Jensen B L, Christiansen N 1994 J. Waterway. Port. C. -ASCE 120 233
[18] Huang Z Y, Larsen C M 2010 29th International Conference on Ocean, Offshore and Arctic Engineering Shanghai, China, 2010 20006
[19] Roshko A, Steinolfson A, Chattoorgoon V 1975 Proceedings of the 2nd U.S. National Conference on Wind Engineering Research Fort Collins, USA, 1975 IV 15
[20] Yamamoto T, Nath J H, Slotta L S 1974 ASCE J. Waterway Port. Coast. Ocean Engng. Div. 100 345
-
[1] Sarpkaya T 2004 J. Fluid Struct. 19 389
[2] Naudascher E 1987 J. Fluid Struct. 1 265
[3] Chen Z H, Fan B C, Zhou B M, Li H Z 2007 Chin. Phys. Soc. 16 1077
[4] Xia Y, Lu D T, Liu Y, Xu Y S 2009 Chin. Phys. Lett. 26 034702
[5] Xu W H, Du J, Yu J X, Li J C 2011 Chin. Phys. Lett. 28 124704
[6] Zdravkovich M M 1985 Appl. Ocean Res. 7 197
[7] Hiwada M, Mabuchi I, Kumada M, Iwakoshi H 1986 Trans. Jpn. Soc. Mech. Eng. B 52 25
[8] Buresti G, Lanciotti A 1992 J. Wind Eng. Ind. Aerodyn. 41 639
[9] Lei C, Cheng L, Kavanagh K 1999 J. Wind Eng. Ind. Aerodyn. 80 263
[10] Nishino T, Roberts G T, Zhang X 2007 Phys. Fluids 19 025103
[11] Bearman P W, Zdravkovich M M 1978 J. Fluid Mech. 89 33
[12] Grass A J, Raven P W J, Stuart R J, Bray J A 1984 J. Energ Resour-ASME 106 70
[13] Bishop R E D, Hassan A Y 1964 Proc. Roy. Soc. Lond. A 277 51
[14] Williamson C H K, Roshko A 1988 J. Fluid Struct. 2 355
[15] Sarpkaya T 1978 ASCE J. Waterway Port Coast. Ocean Div. 104 275
[16] Gopalkrishnan R 1993 Ph. D. Dissertation (Cambridge, MA, USA: MIT)
[17] Sumer B M, Fredsoe J, Jensen B L, Christiansen N 1994 J. Waterway. Port. C. -ASCE 120 233
[18] Huang Z Y, Larsen C M 2010 29th International Conference on Ocean, Offshore and Arctic Engineering Shanghai, China, 2010 20006
[19] Roshko A, Steinolfson A, Chattoorgoon V 1975 Proceedings of the 2nd U.S. National Conference on Wind Engineering Research Fort Collins, USA, 1975 IV 15
[20] Yamamoto T, Nath J H, Slotta L S 1974 ASCE J. Waterway Port. Coast. Ocean Engng. Div. 100 345
计量
- 文章访问数: 7047
- PDF下载量: 662
- 被引次数: 0