搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海海底反射会聚区声传播特性

张鹏 李整林 吴立新 张仁和 秦继兴

引用本文:
Citation:

深海海底反射会聚区声传播特性

张鹏, 李整林, 吴立新, 张仁和, 秦继兴

Characteristics of convergence zone formed by bottom reflection in deep water

Zhang Peng, Li Zheng-Lin, Wu Li-Xin, Zhang Ren-He, Qin Ji-Xing
PDF
导出引用
  • 在深海声道条件下,海水折射效应会使得声场出现会聚效应;在不完全声道条件下,深海海底对声场具有重要影响.利用在中国南海海域收集到的一次深海声传播实验数据,研究了深海不完全声道环境下的海底反射对声传播的影响.实验观测到不同于深海会聚区的海底反射会聚现象,在直达声区范围内的海底地形隆起可导致海底反射会聚区提前形成,并使得部分影区的声强明显提高.由于不平坦海底和海面的反射破坏了完全声道环境下的会聚区结构,在60 km范围内存在两个海底反射会聚区,会聚区增益可达10 dB以上,同时在11 km附近的影区和51 km附近形成高声强区域.当接收深度与声源深度相同时,第二会聚区的增益高于第一会聚区.在第一会聚区内,随着接收深度的增加,声线到达结构趋于复杂,多途效应更加明显.使用抛物方程数值分析结合射线理论对深海海底反射会聚区现象产生的物理原因进行了分析解释.研究结果对于声纳在深海复杂环境下的性能分析具有重要的指导意义.
    There appears a convergence effect on the sound filed under the condition of sound channel in the deep sea due to the refraction effect of the sea water. For the deep water environment with an incomplete channel, sea bottom has an important influence on sound propagation. A long-range sound propagation experiment was conducted in the South China Sea in April 2018. Hyperbolic frequency modulated (HFM) signals with a frequency band of 250-350 Hz are transmitted by an acoustic source which is towed at a speed of 4 knots away from a vertical line array (VLA). The VLA consists of 20 hydrophones which are arranged from 85 m to 3400 m with an unequal depth space. Using the data collected in the experiment, the effects of bathymetry variation on sound propagation are studied. The physical causes of the seafloor reflection convergence phenomenon are explained by using the parabolic equation combined with ray theory. The observed phenomenon is different from the convergence phenomenon in the typical deep water environment, the spatial variation of bathymetry contributes to the formation of the seafloor reflection convergence zone in advance, and the sound intensity in part of shadow zone is significantly increased. Due to the reflection from the seabed, two obvious seafloor reflection convergence zones are observed near the range of 20 km and 40 km respectively, in which both gains increase up to 10 dB, and a high sound intensity area is formed in the shadow zone near the range of 11 km, where the gain is less than the gains in the two convergence zones. In addition, the grazing angle of the sound ray reaching the second convergence zone is smaller than that reaching the first convergence zone when the receiving depth is the same as the source depth, and the rays with smaller glancing angle have less reflection loss, which leads to a higher gain in the second convergence zone. As the water depth becomes gradually shallower with range increasing, the convergence zone near the range of 51 km under the SOFAR channel is destroyed, and the sound field energy in the corresponding range is much smaller since the number of arriving refracted sound rays is reduced. In the first convergence zone, the path of arriving rays is gradually increased as the receiver becomes deeper. Therefore, the arrival structure tends to be complicated, and the multi-path effect is more obvious. The study result is meaningful for the performance analysis of sonar in complex deep water environment.
    [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer-Verlag) p33

    [2]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456

    [3]

    Urick R J 1965 J. Acoust. Soc. Am. 37 1191

    [4]

    Brekhovskikh L M, Lysanov Yu P 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer-Verlag) pp118-182

    [5]

    Williams A O, Horul W 1967 J. Acoust. Soc. Am. 41 189

    [6]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [7]

    Yang K D, Lu Y Y, Xue R Z, Sun Q 2018 Appl. Acoust. 139 222

    [8]

    Wu S L, Li Z L, Qin J X 2015 Chin. Phys. Lett. 32 124301

    [9]

    Vidmar P J 1980 J. Acoust. Soc. Am. 68 634

    [10]

    Hamilton E L, Bachman R T 1982 J. Acoust. Soc. Am. 72 1891

    [11]

    Qin J X, Zhang R H, Luo W Y, Peng Z H, Liu J H, Wang D J 2014 Sci. China: Phys. Mech. Astron. 57 1031

    [12]

    Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE Seattle, Washington, USA, September 20-23, 2010 p1

    [13]

    Li Q Q, Li Z L, Zhang R H 2011 Chin. Phys. Lett. 28 034303

    [14]

    Wu L L, Peng Z H 2015 Chin. Phys. Lett. 32 094302

    [15]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [16]

    Collins M D User's Guide for RAM Versions 1.0 and 1.0p (Washington DC: Naval Research Laboratory) p10

    [17]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990

  • [1]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer-Verlag) p33

    [2]

    Hale F E 1961 J. Acoust. Soc. Am. 33 456

    [3]

    Urick R J 1965 J. Acoust. Soc. Am. 37 1191

    [4]

    Brekhovskikh L M, Lysanov Yu P 2003 Fundamentals of Ocean Acoustics (3rd Ed.) (New York: Springer-Verlag) pp118-182

    [5]

    Williams A O, Horul W 1967 J. Acoust. Soc. Am. 41 189

    [6]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [7]

    Yang K D, Lu Y Y, Xue R Z, Sun Q 2018 Appl. Acoust. 139 222

    [8]

    Wu S L, Li Z L, Qin J X 2015 Chin. Phys. Lett. 32 124301

    [9]

    Vidmar P J 1980 J. Acoust. Soc. Am. 68 634

    [10]

    Hamilton E L, Bachman R T 1982 J. Acoust. Soc. Am. 72 1891

    [11]

    Qin J X, Zhang R H, Luo W Y, Peng Z H, Liu J H, Wang D J 2014 Sci. China: Phys. Mech. Astron. 57 1031

    [12]

    Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE Seattle, Washington, USA, September 20-23, 2010 p1

    [13]

    Li Q Q, Li Z L, Zhang R H 2011 Chin. Phys. Lett. 28 034303

    [14]

    Wu L L, Peng Z H 2015 Chin. Phys. Lett. 32 094302

    [15]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736

    [16]

    Collins M D User's Guide for RAM Versions 1.0 and 1.0p (Washington DC: Naval Research Laboratory) p10

    [17]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990

  • [1] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法. 物理学报, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] 吴双林, 李整林, 秦继兴, 王梦圆, 董凡辰. 东印度洋热带偶极子对声会聚区影响分析. 物理学报, 2022, 71(13): 134301. doi: 10.7498/aps.71.20212355
    [4] 朱启轩, 孙超, 刘雄厚. 利用海底弹射区角度-距离干涉结构特征实现声源深度估计. 物理学报, 2022, 71(18): 184301. doi: 10.7498/aps.71.20220746
    [5] 张海刚, 马志康, 龚李佳, 张明辉, 周建波. 声衍射相移对深海会聚区焦散结构的影响. 物理学报, 2022, 71(20): 204302. doi: 10.7498/aps.71.20220763
    [6] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [7] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [8] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, 2021, 70(3): 034302. doi: 10.7498/aps.70.20201233
    [9] 毕思昭, 彭朝晖. 地球曲率对远距离声传播的影响. 物理学报, 2021, 70(11): 114303. doi: 10.7498/aps.70.20201858
    [10] 朴胜春, 栗子洋, 王笑寒, 张明辉. 深海不完整声道下反转点会聚区研究. 物理学报, 2021, 70(2): 024301. doi: 10.7498/aps.70.20201375
    [11] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究. 物理学报, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [12] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用. 物理学报, 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [13] 李梦竹, 李整林, 周纪浔, 张仁和. 一种低声速沉积层海底参数声学反演方法. 物理学报, 2019, 68(9): 094301. doi: 10.7498/aps.68.20190183
    [14] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响. 物理学报, 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [15] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [16] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法. 物理学报, 2015, 64(17): 174302. doi: 10.7498/aps.64.174302
    [17] 刘华松, 刘丹丹, 姜承慧, 王利栓, 姜玉刚, 孙鹏, 季一勤. 周期结构薄膜在折射率色散下反射区特性研究. 物理学报, 2014, 63(1): 017801. doi: 10.7498/aps.63.017801
    [18] 高博, 杨士莪, 朴胜春. 基于信道传播理论的多基地远程海底混响研究. 物理学报, 2012, 61(5): 054305. doi: 10.7498/aps.61.054305
    [19] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法. 物理学报, 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [20] 黎雪刚, 杨坤德, 张同伟, 邱海宾. 基于拖曳倾斜线列阵的海底反射损失提取方法. 物理学报, 2009, 58(11): 7741-7749. doi: 10.7498/aps.58.7741
计量
  • 文章访问数:  10633
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-26
  • 修回日期:  2018-11-09
  • 刊出日期:  2019-01-05

/

返回文章
返回