搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用海底弹射区角度-距离干涉结构特征实现声源深度估计

朱启轩 孙超 刘雄厚

引用本文:
Citation:

利用海底弹射区角度-距离干涉结构特征实现声源深度估计

朱启轩, 孙超, 刘雄厚

Source depth estimation using angle-range interference pattern in deep ocean bottom bounce area

Zhu Qi-Xuan, Sun Chao, Liu Xiong-Hou
PDF
HTML
导出引用
  • 被动声呐探测位于深海海底弹射区的声源时空时采样能力有限, 且声呐接收信噪比较低, 导致声源深度估计方法性能较差. 针对这一问题, 本文基于射线模型推导了干涉结构峰值条纹关于声源位置的理论表达式, 提出一种基于角度-距离干涉结构峰值特性的声源深度估计方法, 该方法包括利用峰值条纹起伏特性估计声源深度和干涉结构重构两个部分. 在低信噪比条件下, 被噪声淹没的峰值条纹会重现于重构后的干涉结构, 使得声源深度估计方法可以适用于海底弹射区的低信噪比环境. 该方法同时结合阵列空时累积增益和干涉结构的图像低秩特性. 通过典型深海波导蒙特卡罗仿真实验验证, 该方法可在低信噪比条件下对海底弹射区声源的深度进行较为准确的估计.
    Passive sonar limits the ability to sample vertical scale spatiotemporally, and the received signal is indistinct by noise, resulting in the performance degradation or even failure of the source depth estimation method in deep ocean bottom bounce area. When vertical line array is arranged near the sea surface to locate the source by matched-field processing in bottom bounce area, there is great ambiguity in depth dimension. In this work, the problem of source depth estimation in bottom bounce area is addressed. The peak stripe of angle-range interference pattern is modeled and analyzed based on the ray theory, and a source depth estimation method is proposed, which comprises two parts: estimating sound source depth by utilizing peak stripe fluctuation characteristic combined with spatial spectrum analysis, and reconstructing interference pattern using principal component analysis. The flowchart of the method is listed as follows. Firstly, the spatial spectrum corresponding to each range is spliced to obtain the original angle-range interference pattern. Secondly, the original interference pattern is denoised by principal component analysis to obtain the reconstructed interference structure. Finally, the fluctuation period of peak fringes is extracted from the reconstructed interference pattern to calculate the source depth. Under the low signal-to-noise ratio (SNR) condition, the peak stripe destroyed by noise will reappear in the reconstructed interference pattern and the estimation result of sound source depth will be more accurate, making the source depth estimation method suitable for bottom bounce area. The method combines the space-time cumulative gain of the array and the low-rank characteristic of the interference pattern. The simulation results obtained by Bellhop indicate that the fluctuation period of peak stripe depends on the depth and frequency of the source, which is consistent with the modeling result, and the source depth can be estimated precisely by spatial Fourier transform. The simulation results also show that the rank of the interference pattern is very low and the peak stripe can be composed of a few principal components. Monte Carlo experimental results indicate that the estimated results of the source depth by using reconstructed interference pattern are more accurate than those without using principal component analysis at low SNR condition. The proposed method can achieve more than 80% accuracy at –3 dB SNR.
      通信作者: 孙超, csun@nwpu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 11534009) 资助的课题
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11534009)
    [1]

    Hinich M J 1979 J. Acoust. Soc. Am. 66 480Google Scholar

    [2]

    Debever C, Kuperman W A 2007 J. Acoust. Soc. Am. 122 1979Google Scholar

    [3]

    Yang T C 1979 J. Acoust. Soc. Am. 82 1736

    [4]

    Yang T C 2014 J. Acoust. Soc. Am. 135 1218Google Scholar

    [5]

    Wang W B, Ni H Y, Su L, et al. 2019 J. Acoust. Soc. Am. 146 EL317Google Scholar

    [6]

    Liu Y N, Niu H Q, Li Z L 2020 J. Acoust. Soc. Am. 148 873Google Scholar

    [7]

    Neilsen T B, Escobar-Amado C D, Acree M C, et al. 2021 J. Acoust. Soc. Am. 149 692Google Scholar

    [8]

    Liu Y N, Niu H Q, Li Z L, et al. 2021 JASA Express Lett. 1 036002Google Scholar

    [9]

    Duan R, Yang K D, Ma Y L, et al. 2012 Chin. Phys. B 21 124301Google Scholar

    [10]

    Duan R, Yang K D, Li H, et al. 2019 J. Acoust. Soc. Am. 145 903Google Scholar

    [11]

    Mccargar R, Zurk L M 2013 J. Acoust. Soc. Am. 133 EL320Google Scholar

    [12]

    Zheng G Y, Yang T C, Ma Q M, et al. 2020 J. Acoust. Soc. Am. 148 347Google Scholar

    [13]

    Lei Z X, Yang K D, Ma Y L 2016 J. Acoust. Soc. Am. 139 EL19Google Scholar

    [14]

    韩志斌, 彭朝晖, 刘雄厚 2020 物理学报 69 114301Google Scholar

    Han Z B, Peng Z H, Liu X H 2020 Acta Phys. Sin. 69 114301Google Scholar

    [15]

    胡治国, 李整林, 张仁和等 2016 物理学报 65 014303Google Scholar

    Hu Z G, Li Z L, Zhang R H, et al. 2016 Acta Phys. Sin. 65 014303Google Scholar

    [16]

    吴俊楠, 周士弘, 张岩 2016 中国科学: 物理学 力学 天文学 46 014303Google Scholar

    Wu J N, Zhou S H, Zhang Y 2016 Acta Phys. Sin. 46 014303Google Scholar

    [17]

    Weng J B, Yang Y M 2018 IEEE J. Oceanic Eng. 43 1171Google Scholar

    [18]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computation Ocean Acoustic (2nd Ed.) (New York: Springer) pp169–171

    [19]

    Srinivasan S, Srinivasan R 2018 IEEE Trans. Image Process. 16 2688

  • 图 1  海底弹射区特征声线示意图 (a) 声线轨迹; (b)声源处局部放大; (c)接收处局部放大

    Fig. 1.  Eigenray in bottom bounce area: (a) Eigenray path; (b) amplification at sound source position; (c) amplification at receiving position

    图 2  角度-距离干涉结构

    Fig. 2.  Angle-range interference pattern

    图 3  仿真环境示意图

    Fig. 3.  Environment for simulation

    图 4  海底弹射区到达角特性 (a) 声源深度为100 m, 距离10 km时, 垂直阵波束形成对应的归一化空间谱; (b)四条本征声线到达角随距离的变化; (c) BR到达角与出射角的正弦值随距离的变化; (d)声源位于不同深度时, 两类到达角随距离的变化

    Fig. 4.  Characteristics of arrival angel in bottom bounce area: (a) Normalized spatial spectrum of vertical line array (VLA) with the source depth of 100 m, range of 10 km; (b) arrival angle of four eigen-rays verse range; (c) the sine value of BR’s arrival angle and exit angle verse range; (d) two kinds of arrival angles verse range at different source depths

    图 5  不同深度和声源频率的角度-距离干涉结构 (a) 声源深度50 m, 频率200 Hz; (b)声源深度100 m, 频率100 Hz; (c)声源距离8 km处, 图(b)干涉结构角度方向切片; (d)图(a)和(b)两种干涉结构提取的峰值轨迹1

    Fig. 5.  Angle-range interference pattern: (a) Source depth of 50 m, frequency of 200 Hz; (b) source depth of 100 m, frequency of 100 Hz; (c) slice of interference pattern (b) with source range of 8 km; (d) peak stripe track-1 of panels (a) and (b)

    图 6  声源深度为20和100 m、频率为150 Hz、 无噪声时的深度估计结果 (a) 峰值条纹1轨迹; (b)深度模糊函数

    Fig. 6.  Depth estimate result without noise at the source depth of 20 and 100 m, frequency of 200 Hz: (a) Peak stripe track-1; (b) depth estimation ambiguous function

    图 7  两种声源运动距离对应的深度模糊函数

    Fig. 7.  Depth ambiguity function corresponding to two kinds of sources moving distance

    图 8  声源深度为100 m, 声源频率为150 Hz时对应的角度-距离干涉结构 (a) 原始干涉结构; (b) $k=2$时重构干涉结构; (c) $k=4$时重构干涉结构; (d) $k=6$时重构干涉结构

    Fig. 8.  Angle-range interference pattern corresponding to the source depth of 100 m and frequency of 150 Hz: (a) Original interference pattern; (b) reconstructed interfernce pattern with $k=2$; (c) reconstructed interfernce pattern with $k=4$; (d) reconstructed interfernce pattern with $k=6$

    图 9  声源深度为100 m、声源频率为150 Hz、信噪比为–5 dB时对应的(a)原始干涉结构、(b)深度估计模糊函数、(c)重构干涉结构和(d)深度估计模糊函数

    Fig. 9.  (a) Original interference pattern, (b) depth estimation ambiguous function, (c) reconstructed interfernce pattern, and (d) depth estimation ambiguous function with the source depth of 100 m, frequency of 150 Hz, SNR of –5 dB:

    图 10  声源深度为100 m、声源频率为150 Hz、信噪比为–4 dB时, 50次蒙特卡罗实验结果 (a) 原始干涉结构得到的深度估计结果; (b)重构干涉结构得到的深度估计结果

    Fig. 10.  Results of 50 times Monte Carlo experiment with source depth of 100 m, frequency of 150 Hz, SNR of –4 dB: (a) Depth estimation result from original interference pattern; (b) depth estimation result from reconstructed interference pattern

    图 11  未重构和重构后深度估计准确率随信噪比的变化

    Fig. 11.  Accuracy of depth estimation versus SNR using the original interference pattern and the reconstructed interference patter

    表 1  不同信噪比条件下深度估计的准确率

    Table 1.  Accuracy of depth estimation at different SNR conditions

    SNRk
    371116
    5 dB9.3%97.0%99.8%98.6%
    0 dB7.8%83.7%89.2%84.4%
    –5 dB6.6%64.8%76.0%65.8%
    下载: 导出CSV
  • [1]

    Hinich M J 1979 J. Acoust. Soc. Am. 66 480Google Scholar

    [2]

    Debever C, Kuperman W A 2007 J. Acoust. Soc. Am. 122 1979Google Scholar

    [3]

    Yang T C 1979 J. Acoust. Soc. Am. 82 1736

    [4]

    Yang T C 2014 J. Acoust. Soc. Am. 135 1218Google Scholar

    [5]

    Wang W B, Ni H Y, Su L, et al. 2019 J. Acoust. Soc. Am. 146 EL317Google Scholar

    [6]

    Liu Y N, Niu H Q, Li Z L 2020 J. Acoust. Soc. Am. 148 873Google Scholar

    [7]

    Neilsen T B, Escobar-Amado C D, Acree M C, et al. 2021 J. Acoust. Soc. Am. 149 692Google Scholar

    [8]

    Liu Y N, Niu H Q, Li Z L, et al. 2021 JASA Express Lett. 1 036002Google Scholar

    [9]

    Duan R, Yang K D, Ma Y L, et al. 2012 Chin. Phys. B 21 124301Google Scholar

    [10]

    Duan R, Yang K D, Li H, et al. 2019 J. Acoust. Soc. Am. 145 903Google Scholar

    [11]

    Mccargar R, Zurk L M 2013 J. Acoust. Soc. Am. 133 EL320Google Scholar

    [12]

    Zheng G Y, Yang T C, Ma Q M, et al. 2020 J. Acoust. Soc. Am. 148 347Google Scholar

    [13]

    Lei Z X, Yang K D, Ma Y L 2016 J. Acoust. Soc. Am. 139 EL19Google Scholar

    [14]

    韩志斌, 彭朝晖, 刘雄厚 2020 物理学报 69 114301Google Scholar

    Han Z B, Peng Z H, Liu X H 2020 Acta Phys. Sin. 69 114301Google Scholar

    [15]

    胡治国, 李整林, 张仁和等 2016 物理学报 65 014303Google Scholar

    Hu Z G, Li Z L, Zhang R H, et al. 2016 Acta Phys. Sin. 65 014303Google Scholar

    [16]

    吴俊楠, 周士弘, 张岩 2016 中国科学: 物理学 力学 天文学 46 014303Google Scholar

    Wu J N, Zhou S H, Zhang Y 2016 Acta Phys. Sin. 46 014303Google Scholar

    [17]

    Weng J B, Yang Y M 2018 IEEE J. Oceanic Eng. 43 1171Google Scholar

    [18]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computation Ocean Acoustic (2nd Ed.) (New York: Springer) pp169–171

    [19]

    Srinivasan S, Srinivasan R 2018 IEEE Trans. Image Process. 16 2688

  • [1] 李敏, 罗一涵, 李泰霖, 赵开元, 谭毅, 谢宗良. 自适应门控低信噪比非视域成像. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241535
    [2] 周玉媛, 孙超, 谢磊, 刘宗伟. 基于波束-波数域非相干匹配的浅海运动声源深度估计方法. 物理学报, 2023, 72(8): 084302. doi: 10.7498/aps.72.20222361
    [3] 李明杨, 赵航芳, 孙超. 风成噪声背景下垂直阵阵列信噪比随声源深度的变化规律. 物理学报, 2022, 71(4): 044302. doi: 10.7498/aps.71.20211654
    [4] 李明杨, 赵航芳, 孙超. 风成噪声背景下垂直阵阵列信噪比随声源深度的变化规律. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211654
    [5] 孙晨, 冯玉涛, 傅頔, 张亚飞, 李娟, 刘学斌. 多普勒差分干涉仪干涉图信噪比对相位不确定度研究. 物理学报, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [6] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究. 物理学报, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [7] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用. 物理学报, 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [8] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数. 物理学报, 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [9] 王龙昊, 秦继兴, 傅德龙, 李整林, 刘建军, 翁晋宝. 深海大接收深度海底混响研究. 物理学报, 2019, 68(13): 134303. doi: 10.7498/aps.68.20181883
    [10] 李少东, 陈文峰, 杨军, 马晓岩. 低信噪比下的二维联合线性布雷格曼迭代快速超分辨成像算法. 物理学报, 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [11] 孙梅, 周士弘. 大深度接收时深海直达波区的复声强及声线到达角估计. 物理学报, 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [12] 郭晓乐, 杨坤德, 马远良, 杨秋龙. 一种基于简正波模态消频散变换的声源距离深度估计方法. 物理学报, 2016, 65(21): 214302. doi: 10.7498/aps.65.214302
    [13] 苏林, 马力, 宋文华, 郭圣明, 鹿力成. 声速剖面对不同深度声源定位的影响. 物理学报, 2015, 64(2): 024302. doi: 10.7498/aps.64.024302
    [14] 戚聿波, 周士弘, 张仁和, 任云. 一种基于β-warping变换算子的被动声源距离估计方法. 物理学报, 2015, 64(7): 074301. doi: 10.7498/aps.64.074301
    [15] 文方青, 张弓, 陶宇, 刘苏, 冯俊杰. 面向低信噪比的自适应压缩感知方法. 物理学报, 2015, 64(8): 084301. doi: 10.7498/aps.64.084301
    [16] 周天, 李海森, 朱建军, 魏玉阔. 利用多角度海底反向散射信号进行地声参数估计. 物理学报, 2014, 63(8): 084302. doi: 10.7498/aps.63.084302
    [17] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [18] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究. 物理学报, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [19] 袁志林, 张淳民, 赵葆常. 新型偏振干涉成像光谱仪信噪比研究. 物理学报, 2007, 56(11): 6413-6419. doi: 10.7498/aps.56.6413
    [20] 袁坚, 肖先赐. 低信噪比下的状态空间重构. 物理学报, 1997, 46(7): 1290-1299. doi: 10.7498/aps.46.1290
计量
  • 文章访问数:  4964
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-05-15
  • 上网日期:  2022-09-02
  • 刊出日期:  2022-09-20

/

返回文章
返回