搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海大接收深度海底混响研究

王龙昊 秦继兴 傅德龙 李整林 刘建军 翁晋宝

引用本文:
Citation:

深海大接收深度海底混响研究

王龙昊, 秦继兴, 傅德龙, 李整林, 刘建军, 翁晋宝

Bottom reverberation for large receiving depth in deep water

Wang Long-Hao, Qin Ji-Xing, Fu De-Long, Li Zheng-Lin, Liu Jian-Jun, Weng Jin-Bao
PDF
HTML
导出引用
  • 海洋混响对主动声纳工作性能的影响不可忽略, 一直是水声学研究中的一个重要课题. 在南海实验中获取了深海混响实验数据, 包含近海底大接收深度的混响信号, 其强度随时间变化存在锯齿形结构. 为对混响数据进行深入分析, 基于射线理论提出了一种深海海底混响模型,能够计算本地混响和异地混响强度, 并可解释深海混响信号的产生过程. 该模型首先对海底散射体进行网格式划分, 然后根据每个网格内散射体产生混响信号的准确时间进行混响计算, 对于传播路径丰富的深海环境比传统按圆环或椭圆环处理散射体的方式更加精确. 在多种收发距离和接收深度条件下, 将数值模拟结果与实验数据进行比较. 结果表明: 对于大接收深度, 混响整体吻合较好; 而靠近海面处的混响, 二者的一致性下降. 分析结果表明, 使用的海底散射系数参数适用于该实验海区, 同时验证了该散射系数模型对于小掠射角海底散射更加准确, 对应深海大接收深度混响.
    Ocean reverberation is an important issue in underwater acoustics, which usually influences the working performance of the active sonars significantly. The deep-water reverberation data are collected from the South China Sea experiment including the reverberation signals at large receiving depths near the bottom, showing that the wave intensity increases obviously at some moments with time increasing. To analyze in depth the data, a uniform bottom-reverberation model is proposed based on the ray theory, which can calculate monostatic and bistatic reverberation intensity and explain the generation process of deep-water reverberation. The mesh method is first used in this model by dividing bottom scatterers into a number of grids. Then reverberation is calculated based on the exact time of generating the scattering signal from each grid. Due to the exact arrival time, the presented model can provide more accurate result than classical models, in which scatterers are usually treated as circular rings or elliptical rings. Numerical results are compared with experimental reverberations at different receiving distances and depths. The simulated and experimental results agree well overall for large receiving depths, whereas agreement extent decreases for the case of receiving depth close to the sea surface. The analytical results indicate that the applied scattering coefficient is suitable for this experimental sea area, and meanwhile verify that this scattering model is more accurate for low-angle bottom backscatters corresponding to the reverberation at large receiving depths.
      通信作者: 秦继兴, qjx@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11874061, 11434012, 11474302)资助的课题.
      Corresponding author: Qin Ji-Xing, qjx@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874061, 11434012, 11474302).
    [1]

    Bucker H P, Morris H E 1968 J. Acoust. Soc. Am. 44 827Google Scholar

    [2]

    Zhang R H, Jin G L 1987 J. Sound Vib. 119 215

    [3]

    Ellis D D 1995 J. Acoust. Soc. Am. 97 2804Google Scholar

    [4]

    Franchi E R, Griffin J M, King B J 1984 Naval Research Laboratory Washington DC, Report 8721

    [5]

    Weinberg H 1982 OCEANS 82 Washington, DC, USA, September 20-22, 1982 p201

    [6]

    吴承义 1979 声学学报 02 114

    Wu C Y 1979 Acta Acust. 02 114

    [7]

    Lupien V H, Bondaryk J E, Baggeroer A B 1995 J. Acoust. Soc. Am. 98 2987

    [8]

    Collins M D, Evans R B 1992 J. Acoust. Soc. Am. 91 1357

    [9]

    McDaniel S T 1992 J. Acoust. Soc. Am. 91 31

    [10]

    李风华, 金国亮, 张仁和 2000 中国科学A辑 30 560Google Scholar

    Li F H, Jin G L, Zhang R H 2000 Sci. China Ser. A 30 560Google Scholar

    [11]

    刘建军, 李风华, 郭良浩 2004 声学学报 49 56

    Liu J J, Li F H, Guo L H 2004 Acta Acust. 49 56

    [12]

    刘建军, 李风华, 张仁和 2006 声学学报 31 173Google Scholar

    Liu J J, Li F H, Zhang R H 2006 Acta. Acust. 31 173Google Scholar

    [13]

    吴金荣, 孙辉, 黄益旺 2002 哈尔滨工程大学学报 23 4Google Scholar

    Wu J R, Sun H, Huang Y W 2002 J. Harb. Engi. Univ. 23 4Google Scholar

    [14]

    Mackenzie K V 1961 J. Acoust. Soc. Am. 33 1498Google Scholar

    [15]

    Urick R J, Saling D S 1962 J. Acoust. Soc. Am. 34 1721Google Scholar

    [16]

    Ellis D D, Haller D R 1987 J. Acoust. Soc. Am. 82 S124

    [17]

    Ellis D D, Crowe D V 1991 J. Acoust. Soc. Am. 89 2207Google Scholar

    [18]

    Williams K L, Jackson D R 1998 J. Acoust. Soc. Am. 103 169Google Scholar

    [19]

    翁晋宝, 李风华, 刘建军 2014 中国声学学会全国声学学术会议 p67

    Weng J B, Li F H, Liu J J 2014 National Acoustics Academic Conference of ASC Shanghai p67 (in Chinese)

    [20]

    郭熙业, 苏绍璟, 王跃科 2009 声学技术 28 203Google Scholar

    Guo X Y, Su S J, Wang Y K 2009 Tech. Acou. 28 203Google Scholar

    [21]

    Xu L Y, Yang K D, Guo X L 2016 Oceans Shanghai p1

    [22]

    Yang K D, Xu L Y, Yang Q L, Li G X 2018 Acoust. Australia 46 131Google Scholar

    [23]

    Jackson D R, Briggs K B 1992 J. Acoust. Soc. Am. 92 962Google Scholar

  • 图 1  实验设备布放位置及作业方式示意图

    Fig. 1.  Configuration of the deep-water reverberation experiment.

    图 2  实验海域及实验过程俯视图

    Fig. 2.  Vertical view of experimental area and process.

    图 3  实验海域海水声速剖面

    Fig. 3.  Sound speed profile of seawater in experimental area.

    图 4  不同深度水听器接收到的声信号, 声源与接收阵的水平距离为0.76 km

    Fig. 4.  Sound signals received by hydrophones at different depth. The horizontal distance between the source and the receiving array is 0.76 km.

    图 5  混响强度实验数据处理结果 (a)接收器深度205 m; (b)接收器深度3366 m

    Fig. 5.  Reverberation from experimentdata: (a) Receiver depth is 205 m; (b) receiver depth is 3366 m

    图 6  海底散射示意图

    Fig. 6.  Bottom scatteringgeometry.

    图 7  网格法散射体划分示意图

    Fig. 7.  Sketch of grid method for dividing scatterers.

    图 8  海底不同位置散射体对同一时刻混响强度的贡献 (a)数值计算的混响强度; (b) 海底散射体对(a)中9 s时刻混响强度的贡献

    Fig. 8.  Contribution of scatterers at different locations to reverberation at fixed time: (a) Numerically calculated reverberation; (b) contribution of bottom scatterers to reverberation at 9-s moment in (a).

    图 9  不同散射体椭圆环对应的声线传播方式示意图

    Fig. 9.  Schematic diagram of sound propagation corresponding to different elliptical rings of bottom scatterers.

    图 10  数值模拟的大接收深度混响强度与实验结果对比. 声源频率500 Hz, 图中蓝色曲线为实验结果, 红色曲线为数值模拟结果. (a) 收发相距0.76 km, 接收深度1903 m; (b) 收发相距0.76 km, 接收深度3366 m; (c) 收发相距3.19 km, 接收深度2306 m; (d) 收发相距3.19 km, 接收深度3366 m; (e) 收发相距5.45 km, 接收深度2357 m; (f) 收发相距5.45 km, 接收深度3366 m; (g) 收发相距7.75 km, 接收深度3021 m; (h) 收发相距7.75 km, 接收深度3366 m

    Fig. 10.  Comparison of reverberation at large receiving depths between numerical simulations and experimental results. The source frequency is 500 Hz. In each subgraph, the blue curve denotes the experimental result, and the red curve indicates the numerical simulation result. The distance from source to receiver and the receiving depth is (a) 0.76 km and 1903 m, (b) 0.76 km and 3366 m, (c) 3.19 km and 2306 m, (d) 3.19 km and 3366 m, (e) 5.45 km and 2357 m, (f) 5.45 km and 3366 m, (g) 7.75 km and 3021 m, (h) 7.75 km and 3366 m.

    图 11  接收器靠近海面时的混响强度. 声源频率500 Hz, 图中蓝色曲线为实验结果, 红色曲线为数值模拟结果; (a)收发相距0.76 km, 接收深度205 m; (b)收发相距7.75 km, 接收深度205 m

    Fig. 11.  Reverberation for receiving depth near the sea surface. The source frequency is 500 Hz. In each subgraph, the blue curve denotes the experimental result, and the red curve indicates the numerical simulation result. The distance from source to receiver and the receiving depth is (a) 0.76 km and 205 m, (b) 7.75 km and 205 m.

  • [1]

    Bucker H P, Morris H E 1968 J. Acoust. Soc. Am. 44 827Google Scholar

    [2]

    Zhang R H, Jin G L 1987 J. Sound Vib. 119 215

    [3]

    Ellis D D 1995 J. Acoust. Soc. Am. 97 2804Google Scholar

    [4]

    Franchi E R, Griffin J M, King B J 1984 Naval Research Laboratory Washington DC, Report 8721

    [5]

    Weinberg H 1982 OCEANS 82 Washington, DC, USA, September 20-22, 1982 p201

    [6]

    吴承义 1979 声学学报 02 114

    Wu C Y 1979 Acta Acust. 02 114

    [7]

    Lupien V H, Bondaryk J E, Baggeroer A B 1995 J. Acoust. Soc. Am. 98 2987

    [8]

    Collins M D, Evans R B 1992 J. Acoust. Soc. Am. 91 1357

    [9]

    McDaniel S T 1992 J. Acoust. Soc. Am. 91 31

    [10]

    李风华, 金国亮, 张仁和 2000 中国科学A辑 30 560Google Scholar

    Li F H, Jin G L, Zhang R H 2000 Sci. China Ser. A 30 560Google Scholar

    [11]

    刘建军, 李风华, 郭良浩 2004 声学学报 49 56

    Liu J J, Li F H, Guo L H 2004 Acta Acust. 49 56

    [12]

    刘建军, 李风华, 张仁和 2006 声学学报 31 173Google Scholar

    Liu J J, Li F H, Zhang R H 2006 Acta. Acust. 31 173Google Scholar

    [13]

    吴金荣, 孙辉, 黄益旺 2002 哈尔滨工程大学学报 23 4Google Scholar

    Wu J R, Sun H, Huang Y W 2002 J. Harb. Engi. Univ. 23 4Google Scholar

    [14]

    Mackenzie K V 1961 J. Acoust. Soc. Am. 33 1498Google Scholar

    [15]

    Urick R J, Saling D S 1962 J. Acoust. Soc. Am. 34 1721Google Scholar

    [16]

    Ellis D D, Haller D R 1987 J. Acoust. Soc. Am. 82 S124

    [17]

    Ellis D D, Crowe D V 1991 J. Acoust. Soc. Am. 89 2207Google Scholar

    [18]

    Williams K L, Jackson D R 1998 J. Acoust. Soc. Am. 103 169Google Scholar

    [19]

    翁晋宝, 李风华, 刘建军 2014 中国声学学会全国声学学术会议 p67

    Weng J B, Li F H, Liu J J 2014 National Acoustics Academic Conference of ASC Shanghai p67 (in Chinese)

    [20]

    郭熙业, 苏绍璟, 王跃科 2009 声学技术 28 203Google Scholar

    Guo X Y, Su S J, Wang Y K 2009 Tech. Acou. 28 203Google Scholar

    [21]

    Xu L Y, Yang K D, Guo X L 2016 Oceans Shanghai p1

    [22]

    Yang K D, Xu L Y, Yang Q L, Li G X 2018 Acoust. Australia 46 131Google Scholar

    [23]

    Jackson D R, Briggs K B 1992 J. Acoust. Soc. Am. 92 962Google Scholar

  • [1] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [2] 朱启轩, 孙超, 刘雄厚. 利用海底弹射区角度-距离干涉结构特征实现声源深度估计. 物理学报, 2022, 71(18): 184301. doi: 10.7498/aps.71.20220746
    [3] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演. 物理学报, 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [4] 张海刚, 马志康, 龚李佳, 张明辉, 周建波. 声衍射相移对深海会聚区焦散结构的影响. 物理学报, 2022, 71(20): 204302. doi: 10.7498/aps.71.20220763
    [5] 孙静静, 张磊, 甄胜来, 曹志刚, 张国生, 俞本立. 深海原位激光多普勒测速系统. 物理学报, 2021, 70(21): 214205. doi: 10.7498/aps.70.20210367
    [6] 殷丽君, 吴金荣, 侯倩男, 马力. 基于小斜率近似的深海海面混响. 物理学报, 2021, 70(17): 174303. doi: 10.7498/aps.70.20210404
    [7] 蒋光禹, 孙超, 李沁然. 涡旋对深海风成噪声垂直空间特性的影响. 物理学报, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [8] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究. 物理学报, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [9] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用. 物理学报, 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [10] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [11] 李整林, 董凡辰, 胡治国, 吴双林. 深海大深度声场垂直相关特性. 物理学报, 2019, 68(13): 134305. doi: 10.7498/aps.68.20190134
    [12] 李晟昊, 李整林, 李文, 秦继兴. 深海海底山环境下声传播水平折射效应研究. 物理学报, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [13] 孙梅, 周士弘. 大深度接收时深海直达波区的复声强及声线到达角估计. 物理学报, 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [14] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [15] 高博, 杨士莪, 朴胜春. 基于信道传播理论的多基地远程海底混响研究. 物理学报, 2012, 61(5): 054305. doi: 10.7498/aps.61.054305
    [16] 宋诗艳, 王晶, 孟俊敏, 王建步, 扈培信. 深海内波非线性薛定谔方程的研究. 物理学报, 2010, 59(2): 1123-1129. doi: 10.7498/aps.59.1123
    [17] 惠娟, 王自娟, 惠俊英, 何文翔. 双基地混响平均强度理论及仿真预报. 物理学报, 2009, 58(8): 5491-5500. doi: 10.7498/aps.58.5491
    [18] 汤立国, 许肖梅, 刘胜兴. 海底爆破辐射声场的理论及数值研究. 物理学报, 2008, 57(7): 4251-4257. doi: 10.7498/aps.57.4251
    [19] 王兆申, 曹永君. 准光学接收系统隔离度的理论极限问题. 物理学报, 1983, 32(10): 1323-1327. doi: 10.7498/aps.32.1323
    [20] 尚尔昌, 张仁和. 浅海远程混响理论. 物理学报, 1975, 24(4): 260-267. doi: 10.7498/aps.24.260
计量
  • 文章访问数:  9367
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-22
  • 修回日期:  2019-05-12
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回