搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海海底山环境下声传播水平折射效应研究

李晟昊 李整林 李文 秦继兴

引用本文:
Citation:

深海海底山环境下声传播水平折射效应研究

李晟昊, 李整林, 李文, 秦继兴

Horizontal refraction effects of seamounts on sound propagation in deep water

Li Sheng-Hao, Li Zheng-Lin, Li Wen, Qin Ji-Xing
PDF
导出引用
  • 声波在深海海底山环境中传播时,海底山会对声传播产生重要影响.2016年在南海深海进行了一次海底山环境下的声传播实验,观测到了由海底山引起的三维声传播效应,本文利用BELLHOP射线理论解释了海底山环境下的三维声传播机理.结果表明:声波在传播过程中与海底山作用后破坏了深海会聚区结构,导致传播损失增大,在海底山后形成具有明显边界的声水平折射区,利用二维声传播模型无法解释实验现象,海底山后声水平折射区实验测量的声场结构与N×2D模型计算结果存在明显差异,实验的传播损失比N×2D模型计算结果大10 dB.通过三维射线模型分析N×2D模型计算结果与实验结果存在明显差异产生的原因,发现由于声波水平折射作用,部分声线无法到达接收器,使得三维声传播效应对海底山后一定角度范围内声场影响较为明显.因此,深海海底山会引起明显的三维水平折射效应,应在水下目标探测和定位等应用中给予重视.
    The seamounts usually have important effects on sound propagation in deep water. A sound propagation experiment was conducted in the South China Sea in 2016. One of the experimental goals is to investigate the three-dimensional(3D) effects of seamounts on sound propagation. Phenomena about horizontal refraction of acoustic waves are observed in different propagation tracks which go through the seamount along different directions when the source depth is 200 m. Ray methods (BELLHOP N×2D and 3D models) which can calculate sound field efficiently and show clear physical images, are used to analyze and explain the causes of the phenomena. The experimental and numerical results show that the convergent zone structures are destroyed by the direct blockage of seamount due to the multiple reflection of acoustic waves, which leads to the increase of transmission loss (TL), and horizontal-refraction zone with obvious boundaries appears behind the seamount. Some experiment phenomena cannot be explained by BELLHOP N×2D model in which the horizontal refraction effects are not taken into consideration. The experimental sound field structure behind the seamount is obviously different from N×2D model numerical result, i.e.the width of shadow zone based on the experimental data is wider than that calculated by N×2D model, and the width of strong horizontal-refraction zone from the experiment is narrower than the N×2D model result. Moreover, the TLs calculated by N×2D model is about 10 dB less than the experimental result in horizontal refraction zone. After analyzing the difference between experimental data and N×2D model numerical results by BELLHOP 3D model which contains the azimuth-coupling capability, it can be concluded that sound waves reach the receiver through horizontal refraction after the interaction with seamount when the source is located behind the seamount. The eigenrays obtained from 3D model are less than N×2D model numerical result because some of sound beams cannot reach the receiver as a result of the horizontal refraction effects, which leads to the experimental TLs larger than the numerical results calculated by N×2D model. Therefore, 3D effect of seamount has an obvious influence on sound field within a certain angle range behind the seamount, and the investigation of 3D effects of seamounts is meaningful for the sound propagation and target detection in deep water.
      通信作者: 李整林, lzhl@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11434012,41561144006,11874061)资助的课题.
      Corresponding author: Li Zheng-Lin, lzhl@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012, 41561144006, 11874061).
    [1]

    Weston D E 1961 Proc. Phys. Soc. London 78 46

    [2]

    Harrison C H 1979 J. Acoust. Soc. Am. 65 56

    [3]

    Harrison C H 1977 J. Acoust. Soc. Am. 62 1382

    [4]

    Buckingham M J 1986 J. Acoust. Soc. Am. 80 265

    [5]

    Munk W H, Zachariasen F 1991 J. Atmos. Oceanic Technol. 8 554

    [6]

    Chapman N R, Ebbeson G R 1983 J. Acoust. Soc. Am. 73 1979

    [7]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology)

    [8]

    Reilly S M, Potty G R, Goodrich M 2016 J. Comput. Acoust. 24 165007

    [9]

    Herman M, Emily C, Edgar A J, Robert A S 1984 J. Acoust. Soc. Am. 75 1478

    [10]

    Megan S B, Benjamin M G, Marcia J I 2015 J. Comput. Acoust. 23 267

    [11]

    Doolittle R D, Tolstoy A, Buckingham M J 1988 J. Acoust. Soc. Am. 83 2117

    [12]

    Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE Seattle–A Global Responsibility: the Global Ocean is an Uncommon Resource Demanding Common Responsibility Seattle USA, September 20-23, 2010 p1

    [13]

    Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52

    [14]

    Qin J X, Katsnelson B G, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese) [秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于 2016 物理学报 65 034301]

    [15]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [16]

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]

    [17]

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acust. 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425]

    [18]

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese) [秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]

    [19]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p3

    [20]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349

    [21]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990

  • [1]

    Weston D E 1961 Proc. Phys. Soc. London 78 46

    [2]

    Harrison C H 1979 J. Acoust. Soc. Am. 65 56

    [3]

    Harrison C H 1977 J. Acoust. Soc. Am. 62 1382

    [4]

    Buckingham M J 1986 J. Acoust. Soc. Am. 80 265

    [5]

    Munk W H, Zachariasen F 1991 J. Atmos. Oceanic Technol. 8 554

    [6]

    Chapman N R, Ebbeson G R 1983 J. Acoust. Soc. Am. 73 1979

    [7]

    Kim H J 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology)

    [8]

    Reilly S M, Potty G R, Goodrich M 2016 J. Comput. Acoust. 24 165007

    [9]

    Herman M, Emily C, Edgar A J, Robert A S 1984 J. Acoust. Soc. Am. 75 1478

    [10]

    Megan S B, Benjamin M G, Marcia J I 2015 J. Comput. Acoust. 23 267

    [11]

    Doolittle R D, Tolstoy A, Buckingham M J 1988 J. Acoust. Soc. Am. 83 2117

    [12]

    Duda T F, Lin Y T, Newhall A E, Zhang W G, Lynch J F 2010 OCEANS 2010, MTS/IEEE Seattle–A Global Responsibility: the Global Ocean is an Uncommon Resource Demanding Common Responsibility Seattle USA, September 20-23, 2010 p1

    [13]

    Luo W Y, Schmidt H 2009 J. Acoust. Soc. Am. 125 52

    [14]

    Qin J X, Katsnelson B G, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese) [秦继兴, Katsnelson Boris, 彭朝晖, 李整林, 张仁和, 骆文于 2016 物理学报 65 034301]

    [15]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302

    [16]

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303 (in Chinese) [胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303]

    [17]

    Li Z L, Zhang R H, Yan J, Peng Z H, Li F H 2003 Acta Acust. 28 425 (in Chinese) [李整林, 张仁和, 鄢锦, 彭朝晖, 李风华 2003 声学学报 28 425]

    [18]

    Qin J X, Zhang R H, Luo W Y, Wu L X, Jiang L, Zhang B 2014 Acta Acust. 39 145 (in Chinese) [秦继兴, 张仁和, 骆文于, 吴立新, 江磊, 张波 2014 声学学报 39 145]

    [19]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p3

    [20]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349

    [21]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990

  • [1] 康娟, 彭朝晖, 何利, 李晟昊, 于小涛. 基于多层水平变化浅海海底模型的低频反演方法. 物理学报, 2024, 73(5): 054301. doi: 10.7498/aps.73.20231715
    [2] 马树青, 郭肖晋, 张理论, 蓝强, 黄创霞. 水声射线传播的黎曼几何建模·应用 —深海远程声传播会聚区黎曼几何模型. 物理学报, 2023, 72(4): 044301. doi: 10.7498/aps.72.20221495
    [3] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演. 物理学报, 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [4] 张海刚, 马志康, 龚李佳, 张明辉, 周建波. 声衍射相移对深海会聚区焦散结构的影响. 物理学报, 2022, 71(20): 204302. doi: 10.7498/aps.71.20220763
    [5] 殷丽君, 吴金荣, 侯倩男, 马力. 基于小斜率近似的深海海面混响. 物理学报, 2021, 70(17): 174303. doi: 10.7498/aps.70.20210404
    [6] 孙静静, 张磊, 甄胜来, 曹志刚, 张国生, 俞本立. 深海原位激光多普勒测速系统. 物理学报, 2021, 70(21): 214205. doi: 10.7498/aps.70.20210367
    [7] 王颖, 王学锋, 周士弘, 赵晨, 赵俊鹏, 杨勇. 非水平海底情况下海底地震波时域有限差分数值模拟. 物理学报, 2021, 70(22): 224303. doi: 10.7498/aps.70.20210634
    [8] 蒋光禹, 孙超, 李沁然. 涡旋对深海风成噪声垂直空间特性的影响. 物理学报, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [9] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究. 物理学报, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [10] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用. 物理学报, 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [11] 蒋光禹, 孙超, 谢磊, 刘雄厚. 表面声道对深海风成噪声垂直空间特性的影响规律. 物理学报, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [12] 李整林, 董凡辰, 胡治国, 吴双林. 深海大深度声场垂直相关特性. 物理学报, 2019, 68(13): 134305. doi: 10.7498/aps.68.20190134
    [13] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [14] 王龙昊, 秦继兴, 傅德龙, 李整林, 刘建军, 翁晋宝. 深海大接收深度海底混响研究. 物理学报, 2019, 68(13): 134303. doi: 10.7498/aps.68.20181883
    [15] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [16] 高博, 杨士莪, 朴胜春. 基于信道传播理论的多基地远程海底混响研究. 物理学报, 2012, 61(5): 054305. doi: 10.7498/aps.61.054305
    [17] 宋诗艳, 王晶, 王建步, 宋莎莎, 孟俊敏. 应用非线性薛定谔方程模拟深海内波的传播. 物理学报, 2010, 59(9): 6339-6344. doi: 10.7498/aps.59.6339
    [18] 宋诗艳, 王晶, 孟俊敏, 王建步, 扈培信. 深海内波非线性薛定谔方程的研究. 物理学报, 2010, 59(2): 1123-1129. doi: 10.7498/aps.59.1123
    [19] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究. 物理学报, 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [20] 汤立国, 许肖梅, 刘胜兴. 海底爆破辐射声场的理论及数值研究. 物理学报, 2008, 57(7): 4251-4257. doi: 10.7498/aps.57.4251
计量
  • 文章访问数:  9154
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-03
  • 修回日期:  2018-09-20
  • 刊出日期:  2019-11-20

/

返回文章
返回