搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于势流理论的回转体并联入水双空泡演化动力学研究

宋武超 魏英杰 路丽睿 王聪 卢佳兴

引用本文:
Citation:

基于势流理论的回转体并联入水双空泡演化动力学研究

宋武超, 魏英杰, 路丽睿, 王聪, 卢佳兴

Dynamic characteristics of parallel water-entry cavity based on potential flow theory

Song Wu-Chao, Wei Ying-Jie, Lu Li-Rui, Wang Cong, Lu Jia-Xing
PDF
导出引用
  • 两回转体并联入水过程中,双空泡在空间上相互干扰,使得单个入水空泡呈现非对称特性.本文基于势流理论,在现有二维轴对称入水空泡计算模型的基础上,对空泡干涉区域的三维流动进行简化,将相对流动对空泡发展的约束简化为约束势,分析了两回转体轴线内外两侧的空泡形态变化;基于非线性假设,引入影响函数,给出了空泡在三维空间演化的计算模型,并分析了同步并联入水过程空泡的三维演化特性.结果表明:回转体入水过程流场速度势可以看作由一个随回转体运动的点源和位于空泡轴线处的线源叠加产生;在并联入水过程中,双空泡演化在空间呈镜面对称,空泡间的相互扰动可以通过引入有势壁面进行分析;并联入水空泡半径随极角的变化与空泡截面所处深度有关,在靠近闭合点附近的抑制演化区空泡截面半径随极角的增大而逐渐减小,远离闭合点处的抑制演化区空泡截面半径随极角的增大而增大,空泡加权半径规律相反.
    During the water-entry of the parallel axisymmetric bodies, the water-entry cavities are asymmetrical due to the mutual interference between the cavities. In the current study of the cavity dynamic models, the relatively perfect models of axially symmetric dynamic calculation of low speed single water entry have been established. These models mainly focus on the evolution of cavitation, and thus simplifying the flow pattern. However, due to the particularity of parallel water, the fluid forms a relative flow during the evolution of the cavitation in the inner region of the axisymmetric body axis. As a result, the flow is no longer axisymmetric but develops into a complex three-dimensional flow with strong nonlinearity, making the the theoretical model more difficult to establish. In order to analyze the evolution of the parallel cavities of the parallel axisymmetric body water-entry, the flow of the water-entry cavity interference region is simplified by the existing single water-entry calculation model based on the potential flow theory. The constraint of the relative flow to the cavity is simplified into a constraint potential, and the variation of cavity shape is analyzed. Based on the nonlinear hypothesis, the influence function is introduced to establish the calculation model of three-dimensional cavity and the three-dimensional evolution characteristics of parallel cavities are analyzed. The obtained results show that the velocity potential of the axisymmetric body water-entry can be regarded as the superposition of a point source and a line source located on the axis of the cavity. The expansion of the cavity is affected mainly by the point source, while the shrinkage of the cavity is influenced mainly by the line source. During the parallel water-entry of the axisymmetric body, the evolution of the parallel cavities in space is mirror symmetric and the mutual interference between cavities can be analyzed by introducing the potential wall surface. The potential wall has an inhibitory effect on the evolution of the cavities. The variation of the parallel water-entry cavity radius with the polar angle is related to the depth of the cavity cross section. In the inhibition evolution area near the closed point, the cavity radius decreases gradually with the increase of the polar angle, and the void section radius in the inhibition evolution region far from the closed point increases with the polar angle increasing, and is opposite to the radius law. In the shallower depth of the water-entry, the excessive evolution is formed in the expansion process of the cavity, and the excessive evolution will gradually weaken and disappear in the contraction process of the cavity.
      通信作者: 魏英杰, weiyingjie@gmail.com
    • 基金项目: 国家自然科学基金(批准号:11672094)资助的课题.
      Corresponding author: Wei Ying-Jie, weiyingjie@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11672094).
    [1]

    Worthington A M, Cole R S 1897 Phil. Phil. Trans. Roy. Soc. 189 A137

    [2]

    Worthington A M, Cole R S 1990 Phil. Phil. Trans. Roy. Soc. 194 A175

    [3]

    Waugh J G 1968 J. Hydrodyn. 2 87

    [4]

    Birkhoff G, Caywood T E 1949 J. Appl. Phys. 20 646

    [5]

    Glibarg D, Anderson R A 1948 J. Appl. Phys. 19 127

    [6]

    May A, Woodhull J C 1948 J. Appl. Phys. 19 1109

    [7]

    He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701 (in Chinese) [何春涛, 王聪, 何乾坤, 仇洋 2012 物理学报 61 134701]

    [8]

    Holfeld B, Maier F, Izzo M, Dinardo S 2009 Micr. Sci. Tech. 21 73

    [9]

    Tabuteau H, Sikorski D, Simon J, Bruyn J 2011 Phys. Rev. E 84 031403

    [10]

    Logvinovich G V 1969 Hydrodynamics of Flows with Free Boundaries (Naukova Dumka: Kiev) (in Russian)

    [11]

    Lee M, Longoria R G, Wilson D E 1997 Phys. Fluids 9 540

    [12]

    Lee M, Longoria R G, Wilson D E 1997 J. Fluids Struct. 11 819

    [13]

    Truscott T T 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology).

    [14]

    Yan H, Liu Y, Kominiarczuk J, Yue D 2009 J. Fluid Mech. 641 441

    [15]

    Gordillo J M, Sevilla A, Rodriguez J, Martinez C 2005 Phys. Rev. Lett. 95 194501

    [16]

    Aristoff J M, Bush J W M 2009 J. Fluid Mech. 619 45

    [17]

    Ye Q Y 1990 Chin. J. Appl. Mech. 7 17 (in Chinese) [叶取源 1990 应用力学学报 7 17]

    [18]

    Lu Z L 2017 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [路中磊 2017 博士学位论文 (哈尔滨: 哈尔滨工业大学].

    [19]

    Ye Y L, Li Y Q, Zhang A M 2014 Acta Phys. Sin. 63 054706 (in Chinese) [叶亚龙, 李艳青, 张阿漫 2014 物理学报 63 054706]

    [20]

    Duclaux V, Caill F, Duez C, Ybert C, Bocquet L, Clanet C 2007 J. Fluid Mech. 59 1

    [21]

    Mann J, Liu Y, Kim Y, Yue D K P 2007 IEEE J. Ocean Engng. 32 21

    [22]

    Lu L R 2018 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [路丽睿 2018 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

  • [1]

    Worthington A M, Cole R S 1897 Phil. Phil. Trans. Roy. Soc. 189 A137

    [2]

    Worthington A M, Cole R S 1990 Phil. Phil. Trans. Roy. Soc. 194 A175

    [3]

    Waugh J G 1968 J. Hydrodyn. 2 87

    [4]

    Birkhoff G, Caywood T E 1949 J. Appl. Phys. 20 646

    [5]

    Glibarg D, Anderson R A 1948 J. Appl. Phys. 19 127

    [6]

    May A, Woodhull J C 1948 J. Appl. Phys. 19 1109

    [7]

    He C T, Wang C, He Q K, Qiu Y 2012 Acta Phys. Sin. 61 134701 (in Chinese) [何春涛, 王聪, 何乾坤, 仇洋 2012 物理学报 61 134701]

    [8]

    Holfeld B, Maier F, Izzo M, Dinardo S 2009 Micr. Sci. Tech. 21 73

    [9]

    Tabuteau H, Sikorski D, Simon J, Bruyn J 2011 Phys. Rev. E 84 031403

    [10]

    Logvinovich G V 1969 Hydrodynamics of Flows with Free Boundaries (Naukova Dumka: Kiev) (in Russian)

    [11]

    Lee M, Longoria R G, Wilson D E 1997 Phys. Fluids 9 540

    [12]

    Lee M, Longoria R G, Wilson D E 1997 J. Fluids Struct. 11 819

    [13]

    Truscott T T 2009 Ph. D. Dissertation (Boston: Massachusetts Institute of Technology).

    [14]

    Yan H, Liu Y, Kominiarczuk J, Yue D 2009 J. Fluid Mech. 641 441

    [15]

    Gordillo J M, Sevilla A, Rodriguez J, Martinez C 2005 Phys. Rev. Lett. 95 194501

    [16]

    Aristoff J M, Bush J W M 2009 J. Fluid Mech. 619 45

    [17]

    Ye Q Y 1990 Chin. J. Appl. Mech. 7 17 (in Chinese) [叶取源 1990 应用力学学报 7 17]

    [18]

    Lu Z L 2017 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [路中磊 2017 博士学位论文 (哈尔滨: 哈尔滨工业大学].

    [19]

    Ye Y L, Li Y Q, Zhang A M 2014 Acta Phys. Sin. 63 054706 (in Chinese) [叶亚龙, 李艳青, 张阿漫 2014 物理学报 63 054706]

    [20]

    Duclaux V, Caill F, Duez C, Ybert C, Bocquet L, Clanet C 2007 J. Fluid Mech. 59 1

    [21]

    Mann J, Liu Y, Kim Y, Yue D K P 2007 IEEE J. Ocean Engng. 32 21

    [22]

    Lu L R 2018 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [路丽睿 2018 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

  • [1] 杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚. 并联模型研究双层热电薄膜热电性能. 物理学报, 2023, 72(22): 228401. doi: 10.7498/aps.72.20231259
    [2] 邵雅婷, 严凯, 吴银忠, 郝翔. 非对称自旋-轨道耦合系统的多体量子相干含时演化. 物理学报, 2021, 70(1): 010301. doi: 10.7498/aps.70.20201199
    [3] 杨柳, 孙铁志, 魏英杰, 王聪, 李佳川, 夏维学. 超弹性球体入水过程空泡演化及球体变形实验. 物理学报, 2021, 70(8): 084701. doi: 10.7498/aps.70.20201738
    [4] 魏梦举, 陈力, 伍涛, 张鸿雁, 崔海航. 微尺度空泡溃灭驱使微球运动的机理研究. 物理学报, 2017, 66(16): 164702. doi: 10.7498/aps.66.164702
    [5] 路中磊, 魏英杰, 王聪, 曹伟. 开放空腔壳体入水扰动流场结构及空泡失稳特征. 物理学报, 2017, 66(6): 064702. doi: 10.7498/aps.66.064702
    [6] 路中磊, 魏英杰, 王聪, 孙钊. 基于高速摄像实验的开放腔体圆柱壳入水空泡流动研究. 物理学报, 2016, 65(1): 014704. doi: 10.7498/aps.65.014704
    [7] 李佳川, 魏英杰, 王聪, 邓环宇. 加热球体入水空泡实验研究. 物理学报, 2016, 65(20): 204703. doi: 10.7498/aps.65.204703
    [8] 季袁冬, 屠浙, 赖莉, 罗懋康. 非对称耦合粒子链在棘齿势中的确定性定向输运. 物理学报, 2015, 64(7): 070501. doi: 10.7498/aps.64.070501
    [9] 屠浙, 赖莉, 罗懋康. 分数阶非对称耦合系统在对称周期势中的定向输运. 物理学报, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [10] 王飞, 邓翠, 屠浙, 马洪. 耦合分数阶布朗马达在非对称势中的输运. 物理学报, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [11] 姚熊亮, 叶曦, 张阿漫. 行波驱动下空泡在可压缩流场中的运动特性研究. 物理学报, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [12] 李贝贝, 张宏超, 韩冰, 陈军, 倪晓武, 陆建. 圆锥边界附近激光空泡溃灭行为的研究. 物理学报, 2012, 61(17): 174210. doi: 10.7498/aps.61.174210
    [13] 何春涛, 王聪, 何乾坤, 仇洋. 圆柱体低速入水空泡试验研究. 物理学报, 2012, 61(13): 134701. doi: 10.7498/aps.61.134701
    [14] 黎欢. 非对称Anderson模型的重整微扰展开. 物理学报, 2010, 59(11): 8052-8062. doi: 10.7498/aps.59.8052
    [15] 赵瑞, 徐荣青, 梁忠诚, 陆建, 倪晓武. 含气量对黏性液体中空泡脉动特性的影响. 物理学报, 2009, 58(12): 8400-8405. doi: 10.7498/aps.58.8400
    [16] 王雨虹, 王江安, 任席闯. 激光空泡特性实验与数值计算研究. 物理学报, 2009, 58(12): 8372-8378. doi: 10.7498/aps.58.8372
    [17] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究. 物理学报, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
    [18] 赵 瑞, 徐荣青, 沈中华, 陆 建, 倪晓武. 黏性液体中激光空泡脉动特性的理论和实验研究. 物理学报, 2006, 55(9): 4783-4788. doi: 10.7498/aps.55.4783
    [19] 贺西平, 李 斌. 弯张换能器装配预应力及入水后的变化. 物理学报, 2004, 53(2): 498-502. doi: 10.7498/aps.53.498
    [20] 袁德荣, 乔灵芝. 带有非对称双阱势的氢键链中的扭结孤子激发. 物理学报, 2001, 50(3): 394-397. doi: 10.7498/aps.50.394
计量
  • 文章访问数:  6099
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 修回日期:  2018-09-11
  • 刊出日期:  2019-11-20

/

返回文章
返回