搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

并联模型研究双层热电薄膜热电性能

杨士冠 林鑫 何俊松 翟立军 程林 吕明豪 刘虹霞 张艳 孙志刚

引用本文:
Citation:

并联模型研究双层热电薄膜热电性能

杨士冠, 林鑫, 何俊松, 翟立军, 程林, 吕明豪, 刘虹霞, 张艳, 孙志刚

Study of parallel models for thermoelectric properties of double-layer thermoelectric thin films

Yang Shi-Guan, Lin Xin, He Jun-Song, Zhai Li-Jun, Cheng Lin, Lü Ming Hao, Liu Hong-Xia, Zhang Yan, Sun Zhi-Gang
PDF
HTML
导出引用
  • 目前, 热电双层膜的电输运性能测量及预测一般采用并联模型理论, 然而并联模型使用条件缺乏理论和实验的支持和验证. 本文借助于COMSOL Multiphysics软件采用有限元理论模拟得到了Cu/Si, Ag/Si双层膜在施加温度差下的塞贝克系数, 并与并联模型进行比较. 研究双层膜两端是否镀金属Pt层、双层膜之间插入高阻/低阻/绝缘界面对双层膜的塞贝克系数测量结果的影响. 研究发现, 当冷热端无Pt时, 高阻和电绝缘界面时Si和Cu两侧电势分别沿温度梯度方向均匀分布, 测得其塞贝克系数分别与材料本身的值相同, 低阻界面时Cu侧热电势随着探针间距L均匀变化, Si侧呈现非均匀变化. 有Pt时, Cu和Si侧的热电势沿着温度梯度的方向分布均匀, 无论在绝缘/高阻/低阻界面中, Si和Cu两侧测量值均与Cu塞贝克系数相同. 实验研究了Si/Ag和Bi/Ag双层膜, 无Pt时, Si/Ag双层膜Si侧的塞贝克系数的绝对值随着温度的降低而降低, 但是Ag侧塞贝克系数的绝对值随着温度的降低而升高. 有Pt时, Bi/Ag双层膜两侧的塞贝克系数相同.
    Currently, the measurement and prediction of the electrical transport performance of thermoelectric double-layer membrane is often based on the theory of parallel model. However, the conditions under which the parallel model can be used lack theoretical and experimental support and validation. In this work, the Seebeck coefficients of Cu/Si and Ag/Si bilayers under applied temperature difference are obtained by using finite element theory simulations with the help of COMSOL Multiphysics software and compared with the results from the parallel model. Whether the ends of the bilayer plated with a metal Pt layer, and the insertion of a high-resistance/low-resistance/insulation interface between the bilayers affect the Seebeck coefficient measurements of the bilayer are investigated. It is found that when there is no Pt at the hot end or cold end, the potentials on the Si side and Cu side at the high-resistance and electrically insulating interfaces are uniformly distributed along the direction of the temperature gradient, respectively, and the measured Seebeck coefficients are the same as the values of the materials’ own, respectively, and the thermal potential on the Cu side at the low-resistance interface varies uniformly with the probe spacing L, while the thermal potential on the Si side shows a non-uniform variation. With Pt, the thermal potentials on the Cu side and Si side are uniformly distributed along the direction of the temperature gradient, and the measured values on both Si side and Cu side are the same as the Cu Seebeck coefficients, regardless of the insulating/high-resistance/low-resistance interface. The Si/Ag and Bi/Ag bilayers are investigated experimentally. In the absence of Pt, the absolute value of the Seebeck coefficient on the Si side of Si/Ag bilayer decreases with temperature decreasing, but the absolute value of the Seebeck coefficient on the Ag side increases with temperature decreasing. In the presence of Pt, the Seebeck coefficients on both sides of the Bi/Ag bilayer membrane are equal.
      通信作者: 孙志刚, sun_zg@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174297, 12204342)和山西省基础研究计划(批准号: 202103021224283, 202203021212323)资助的课题.
      Corresponding author: Sun Zhi-Gang, sun_zg@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174297, 12204342) and the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202103021224283, 202203021212323).
    [1]

    陈立东, 刘睿恒, 史讯 2017 热电材料与器件 (北京: 科学出版社) 第1页

    Chen L D, Liu R H, Shi X 2017 Thermoelectric Materials and Devices (Beijing: Science Press) p1

    [2]

    Mizue M, Masashi M, Kimihiro O 2013 J. Micromech. Microeng. 23 115016Google Scholar

    [3]

    Nouredine O, Alain P, Abdelkhalek K, Khalid H 2023 Eur. Phys. J. Appl. Phys. 98 29Google Scholar

    [4]

    Ihtesham C, Ravi P, Kelly L, Gregory C, Sridhar N, Ravi M, David K, Randall A, Rama V 2009 Nat. Nanotechnol. 4 235Google Scholar

    [5]

    Yang C, Souchay D, Knei M, et al. 2017 Nat. Commun. 8 16076Google Scholar

    [6]

    Pilaipon N, Rachsak S, Mati H, Aparporn S 2017 J. Electron. Mater. 4 66444Google Scholar

    [7]

    Yordanov P, Wochner P, Ibrahimkutty S, Dietl C, Wrobel F, Felici R, Gregori G, Maier J, Keimer B, Habermeier H U 2017 Appl. Phys. Lett. 110 253101Google Scholar

    [8]

    Gromova D G, Shterna Y I, Rogacheva M S, Shulyat’eva A S, Kirilenkoa E P, Shterna M Y, Fedorovb V A, Mikhailovaa M S 2016 Inorg. Mater. 52 1132Google Scholar

    [9]

    Hinterleitner B, Knapp I, Poneder M, et al. 2019 Nature 576 85Google Scholar

    [10]

    Masaaki I, Hironori A, Daisuke T, Jiro K 2019 Electr. Eng. Jpn. 208 10Google Scholar

    [11]

    Ju H, Kim J 2019 ACS Appl. Mater. Interfaces 11 35354Google Scholar

    [12]

    Liu S Y, Peng S J, Ma J, Li G J, Qin X S, Li M M, Wang Q 2017 Superlattice. Microst. 104 282Google Scholar

    [13]

    Tani J I, Ishikawa H 2023 Mater. Lett. 331 133460Google Scholar

    [14]

    Tian K, Tiwar A 2019 Sci. Rep. 9 3133Google Scholar

    [15]

    Usop R, Hasnan M M I M, Mohamad M, Ahmad M K, Said S M, Salleh F 2022 Micromachines. Basel. 13 2169Google Scholar

    [16]

    Stevens D L, Ortiz A, Cho C, Gamage G A, Ren Z F, Grunlan J C 2021 Appl. Phys. Lett. 118 151904Google Scholar

    [17]

    Sumino M, Harada K, Ikeda M, Tanaka S, Miyazaki K, Adachi C 2011 Appl. Phys. Lett. 118 093308Google Scholar

    [18]

    Nordheim V L, Gorter C J 1935 Physics 2 383Google Scholar

    [19]

    Ho T L, Ding K, Lyapunov N, Suen C H, Wong L W, Zhao J, Yang M, Zhou X, Dai J Y 2022 Nanomaterials. Basel. 12 2128Google Scholar

    [20]

    Hinterleitner B, Knapp I, Poneder M, et al. 2008 Appl. Phys. Lett. 92 191911Google Scholar

    [21]

    Bhogra A, Masarrat A, Hasina D, Meena R, Kumar A, Som T, Dong C L, Chen C L, Kandasami A 2021 Mater. Lett. 282 128880Google Scholar

    [22]

    Koga T, Cronin S B, Dresselhaus M S, Liu J L, Wang K L 2000 Appl. Phys. Lett. 77 1490Google Scholar

    [23]

    Heinze S, Habermeier H U, Cristiani G, Canosa S B, Tacon M L, Keimer B 2012 Appl. Phys. Lett. 101 131603Google Scholar

    [24]

    Meng J H, Wu H C, Gao D Y, Zhang K, Gui L, Yan W M 2020 Energy 217 119360

    [25]

    Chen L, Lee J 2015 Appl. Energ. 150 138Google Scholar

  • 图 1  (a)金属/半导体双层膜结构; (b)根据并联模型给出的测试示意图

    Fig. 1.  (a) Bilayered thin film with metal/semiconductor structure; (b) measurement schematic given based on the parallel mode.

    图 2  (a)低温电输运测量原理示意图; (b) CTA-3测量原理示意图

    Fig. 2.  (a) Schematic diagram of the measurement principle of low-temperature electrical transport; (b) schematic diagram of CTA-3 measurement principle.

    图 3  双层膜两端无镀Pt(a)和有镀Pt(b)的Seebeck系数测量示意图

    Fig. 3.  Measurement schematic of Seebeck coefficient without Pt (a) and with Pt (b) plated at both ends of bilayered thin films.

    图 4  双层膜热电模型 (a)无Pt高阻界面; (b)无Pt低阻界面; (c)无Pt电绝缘界面; (d)有Pt高阻界面; (e)有Pt低阻界面; (f)有Pt电绝缘界面

    Fig. 4.  Two-layer thermoelectric model: (a) Without Pt high resistance interface; (b) Pt low resistance interface; (c) Pt electrical insulation interface; (d) Pt high resistance interface; (e) Pt low resistance interface; (f) Pt electrical insulation interface.

    图 5  (a)有Pt模型模型热电势分布图; (b)无Pt模型模型热电势分布图; (c)无Pt模型热端热电势分布图; (d)无Pt模型冷端热电势分布图

    Fig. 5.  (a) Thermoelectric potential distribution diagram with Pt model; (b) thermoelectric potential distribution diagram without Pt model; (c) thermoelectric potential distribution diagram at the hot end of the Pt model; (d) thermoelectric potential distribution diagram of the cold end of the Pt-free model.

    图 6  (a)有Pt模型与无Pt模型热电势分布曲线; (b)有Pt模型和无Pt模型Si和Cu侧不同位置测量的Seebeck系数及根据并联模型验证公式得到的Cu/Si双层膜的Seebeck系数理论值

    Fig. 6.  (a) Thermoelectric potential distribution curves with and without Pt model; (b) Seebeck coefficients measured at different positions on Si and Cu side with and without Pt model and their parallel verification formulas.

    图 7  (a)无Pt时高阻或电绝缘界面; (b)无Pt低阻界面双层热电模型热电势分布图

    Fig. 7.  (a) High resistance or electrical insulation interface without Pt; (b) thermoelectric potential distribution diagram of double-layer thermoelectric model without Pt low resistance interface.

    图 8  (a)无Pt高阻或电绝缘界面热电势分布曲线; (b) 无Pt低阻界面的热电势分布曲线; (c)无Pt高阻或电绝缘界面双层热电模型不同位置的Seebeck系数; (d)无Pt低阻界面双层热电模型不同位置的Seebeck系数

    Fig. 8.  (a) Thermoelectric potential distribution curve at the interface without Pt high resistance or electrical insulation; (b) thermoelectric potential distribution curve without PT-low resistance interface; (c) Seebeck coefficients at different locations of double-layer thermoelectric models without Pt high resistance or electrically insulated interfaces; (d) Seebeck coefficients at different positions of a two-layer thermoelectric model without Pt low resistance interface.

    图 9  (a)有Pt低阻或高阻界面; (b)有Pt电绝缘界面双层热电模型热电势分布图

    Fig. 9.  (a) Interface with low or high Pt resistance; (b) thermoelectric potential distribution diagram of double-layer thermoelectric model with Pt electrical insulation interface.

    图 10  (a)有Pt高阻、低阻界面双层热电模型Si侧、界面、Cu侧热电势分布曲线; (b) 有Pt高阻或低阻界面双层热电模型不同位置的Seebeck系数; (c)有Pt电绝缘界面双层热电模型Si侧、界面、Cu侧热电势分布曲线; (d)有Pt电绝缘界面不同位置的Seebeck系数

    Fig. 10.  (a) Thermoelectric potential distribution curves on Si side, interface and Cu side of the double-layer thermoelectric model with Pt high resistance and low resistance interface; (b) Seebeck coefficients at different locations of double-layer thermoelectric models with Pt high or low resistance interfaces; (c) thermoelectric potential distribution curves of Si side, interface and Cu side of double-layer thermoelectric model with Pt electrical insulation interface; (d) Seebeck coefficient with Pt electrical insulation interface at different positions.

    图 11  (a)不同温度下Si/Ag双层膜Si侧、Ag侧的Seebeck系数; (b) 300 K有Pt不同镀银厚度下Bi/Ag双层膜Bi侧、Ag侧的Seebeck系数

    Fig. 11.  (a) Seebeck coefficients of Si/Ag bilayer films on Si side and Ag side at different temperatures; (b) Seebeck coefficient of Bi/Ag bilayer film on Bi side and Ag side at different silver plating thickness of Pt at 300 K.

    表 1  室温下双层膜正面及反面Seebeck系数测量结果

    Table 1.  Measurement results of Seebeck coefficient on front and back of the bilayered thin films at room temperature.

    n-Si Ag/n-Si SI-Si Ag/SI-Si Cu/n-Si Cu/n-Si
    正面/(µV·K–1) –430 –1.25 –3.33×104 –2.78×10–1 –7.83 –8.02
    反面/(µV·K–1) –416 –218.75 –3.24×104 –3.89×104 –401 –415
    下载: 导出CSV

    表 2  Si, Cu, Ag, Bi的材料参数

    Table 2.  Material parameters of Si, Cu, Ag and Bi.

    名称 Si Cu Ag Bi
    相对介电常数(1) 11.7 1
    导热系数/(W·m–1·K–1) 131 400
    密度/(kg·m–3) 2329 8700
    常压热容/(J·kg–1·K–1) 700 385
    电导率/(S·m–1) 2.52×10–4 5.998×107 1.01×107 5.77×105
    Seebeck系数/(V·K–1) –0.45×10–3 –3.33×10–6 5.81×10–6 –6.36×10–5
    下载: 导出CSV
  • [1]

    陈立东, 刘睿恒, 史讯 2017 热电材料与器件 (北京: 科学出版社) 第1页

    Chen L D, Liu R H, Shi X 2017 Thermoelectric Materials and Devices (Beijing: Science Press) p1

    [2]

    Mizue M, Masashi M, Kimihiro O 2013 J. Micromech. Microeng. 23 115016Google Scholar

    [3]

    Nouredine O, Alain P, Abdelkhalek K, Khalid H 2023 Eur. Phys. J. Appl. Phys. 98 29Google Scholar

    [4]

    Ihtesham C, Ravi P, Kelly L, Gregory C, Sridhar N, Ravi M, David K, Randall A, Rama V 2009 Nat. Nanotechnol. 4 235Google Scholar

    [5]

    Yang C, Souchay D, Knei M, et al. 2017 Nat. Commun. 8 16076Google Scholar

    [6]

    Pilaipon N, Rachsak S, Mati H, Aparporn S 2017 J. Electron. Mater. 4 66444Google Scholar

    [7]

    Yordanov P, Wochner P, Ibrahimkutty S, Dietl C, Wrobel F, Felici R, Gregori G, Maier J, Keimer B, Habermeier H U 2017 Appl. Phys. Lett. 110 253101Google Scholar

    [8]

    Gromova D G, Shterna Y I, Rogacheva M S, Shulyat’eva A S, Kirilenkoa E P, Shterna M Y, Fedorovb V A, Mikhailovaa M S 2016 Inorg. Mater. 52 1132Google Scholar

    [9]

    Hinterleitner B, Knapp I, Poneder M, et al. 2019 Nature 576 85Google Scholar

    [10]

    Masaaki I, Hironori A, Daisuke T, Jiro K 2019 Electr. Eng. Jpn. 208 10Google Scholar

    [11]

    Ju H, Kim J 2019 ACS Appl. Mater. Interfaces 11 35354Google Scholar

    [12]

    Liu S Y, Peng S J, Ma J, Li G J, Qin X S, Li M M, Wang Q 2017 Superlattice. Microst. 104 282Google Scholar

    [13]

    Tani J I, Ishikawa H 2023 Mater. Lett. 331 133460Google Scholar

    [14]

    Tian K, Tiwar A 2019 Sci. Rep. 9 3133Google Scholar

    [15]

    Usop R, Hasnan M M I M, Mohamad M, Ahmad M K, Said S M, Salleh F 2022 Micromachines. Basel. 13 2169Google Scholar

    [16]

    Stevens D L, Ortiz A, Cho C, Gamage G A, Ren Z F, Grunlan J C 2021 Appl. Phys. Lett. 118 151904Google Scholar

    [17]

    Sumino M, Harada K, Ikeda M, Tanaka S, Miyazaki K, Adachi C 2011 Appl. Phys. Lett. 118 093308Google Scholar

    [18]

    Nordheim V L, Gorter C J 1935 Physics 2 383Google Scholar

    [19]

    Ho T L, Ding K, Lyapunov N, Suen C H, Wong L W, Zhao J, Yang M, Zhou X, Dai J Y 2022 Nanomaterials. Basel. 12 2128Google Scholar

    [20]

    Hinterleitner B, Knapp I, Poneder M, et al. 2008 Appl. Phys. Lett. 92 191911Google Scholar

    [21]

    Bhogra A, Masarrat A, Hasina D, Meena R, Kumar A, Som T, Dong C L, Chen C L, Kandasami A 2021 Mater. Lett. 282 128880Google Scholar

    [22]

    Koga T, Cronin S B, Dresselhaus M S, Liu J L, Wang K L 2000 Appl. Phys. Lett. 77 1490Google Scholar

    [23]

    Heinze S, Habermeier H U, Cristiani G, Canosa S B, Tacon M L, Keimer B 2012 Appl. Phys. Lett. 101 131603Google Scholar

    [24]

    Meng J H, Wu H C, Gao D Y, Zhang K, Gui L, Yan W M 2020 Energy 217 119360

    [25]

    Chen L, Lee J 2015 Appl. Energ. 150 138Google Scholar

  • [1] 廖敦微, 周建华, 郑月军. 基于裂纹模板法的双层金属网格透明导电薄膜制备及性能. 物理学报, 2025, 74(1): 014201. doi: 10.7498/aps.74.20241305
    [2] 郑钦仁, 詹涪至, 折俊艺, 王建宇, 石若立, 孟国栋. 石墨烯的形貌特征对其场发射性能的影响. 物理学报, 2024, 73(8): 086101. doi: 10.7498/aps.73.20231784
    [3] 姜阳阳, 夏晓霜, 李建波. 双层石墨烯薄膜体系中的四波混频特性. 物理学报, 2023, 72(12): 126801. doi: 10.7498/aps.72.20230012
    [4] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变. 物理学报, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [5] 卢文, 赵海兴, 孟磊, 胡枫. 具有双峰特性的双层超网络模型. 物理学报, 2021, 70(1): 018901. doi: 10.7498/aps.70.20201065
    [6] 陈传文, 项阳. 正交各向异性双层交换弹簧薄膜的磁矩分布. 物理学报, 2016, 65(12): 127502. doi: 10.7498/aps.65.127502
    [7] 秦晨, 余辉, 叶乔波, 卫欢, 江晓清. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器. 物理学报, 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [8] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [9] 肖化平, 陈元平, 杨凯科, 魏晓林, 孙立忠, 钟建新. 无序双层六角氮化硼量子薄膜的电子性质. 物理学报, 2012, 61(17): 178101. doi: 10.7498/aps.61.178101
    [10] 彭勇刚, 郑雨军. 双层生物膜的动力学性质. 物理学报, 2011, 60(8): 088701. doi: 10.7498/aps.60.088701
    [11] 刘忍肖, 陈胜利, 董鹏. 旋涂法快速制备双层二元胶体微球有序薄膜. 物理学报, 2009, 58(4): 2820-2828. doi: 10.7498/aps.58.2820
    [12] 王磊, 杨成韬, 解群眺, 叶井红. 双层纳米磁电薄膜模型及分析. 物理学报, 2009, 58(5): 3515-3519. doi: 10.7498/aps.58.3515
    [13] 荣建红, 云国宏. 外应力场下双层铁磁薄膜中的铁磁共振性质. 物理学报, 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [14] 王久敏, 陈坤基, 宋 捷, 余林蔚, 吴良才, 李 伟, 黄信凡. 氮化硅介质中双层纳米硅薄膜的两级电荷存储. 物理学报, 2006, 55(11): 6080-6084. doi: 10.7498/aps.55.6080
    [15] 蒋益明, 谢亨博, 郭 峰, 刘 平, 李 劲. 金属有机双层膜传质模型理论研究. 物理学报, 2005, 54(12): 5769-5773. doi: 10.7498/aps.54.5769
    [16] 罗派峰, 唐新峰, 熊 聪, 张清杰. 多壁碳纳米管对p型Ba0.3FeCo3Sb12化合物热电性能的影响. 物理学报, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
    [17] 谢亨博, 蒋益明, 郭 峰, 刘 平, 李 劲. Ag/TCNQ纳米双层膜中传质规律研究. 物理学报, 2004, 53(11): 3849-3852. doi: 10.7498/aps.53.3849
    [18] 姜宏伟, 李明华, 王艾玲, 郑鹉. NiFe/FeMn双层膜的交换耦合. 物理学报, 2004, 53(4): 1232-1235. doi: 10.7498/aps.53.1232
    [19] 李明华, 于广华, 何珂, 朱逢吾, 赖武彦. 具有分隔层Bi的反铁磁/铁磁双层薄膜间的短程交换耦合. 物理学报, 2002, 51(12): 2854-2857. doi: 10.7498/aps.51.2854
    [20] 侯建国, 吴自勒. a-Ge/Au双层膜退火后分形区的形成. 物理学报, 1988, 37(10): 1735-1740. doi: 10.7498/aps.37.1735
计量
  • 文章访问数:  2286
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2023-08-30
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-11-20

/

返回文章
返回