搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有双峰特性的双层超网络模型

卢文 赵海兴 孟磊 胡枫

引用本文:
Citation:

具有双峰特性的双层超网络模型

卢文, 赵海兴, 孟磊, 胡枫

Double-layer hypernetwork model with bimodal peak characteristics

Lu Wen, Zhao Hai-Xing, Meng Lei, Hu Feng
PDF
HTML
导出引用
  • 随着社会经济的快速发展, 社会成员及群体之间的关系呈现出了更复杂、更多元化的特点. 超网络作为一种描述复杂多元关系的网络, 已在不同领域中得到了广泛的应用. 服从泊松度分布的随机网络是研究复杂网络的开创性模型之一, 而在现有的超网络研究中, 基于ER随机图的超网络模型尚属空白. 本文首先在基于超图的超网络结构中引入ER随机图理论, 提出了一种ER随机超网络模型, 对超网络中的节点超度分布进行了理论分析, 并通过计算机仿真了在不同超边连接概率条件下的节点超度分布情况, 结果表明节点超度分布服从泊松分布, 符合随机网络特征并且与理论推导相一致. 进一步, 为更准确有效地描述现实生活中的多层、异质关系, 本文构建了节点超度分布具有双峰特性, 层间采用随机方式连接, 层内分别为ER-ER, BA-BA和BA-ER三种不同类型的双层超网络模型, 理论分析得到了三种双层超网络节点超度分布的解析表达式, 三种双层超网络在仿真实验中的节点超度分布均具有双峰特性.
    With the rapid development of social economy, the relationship between social members and groups has shown more complex and diverse characteristics. As a network depicting complex relation and multi-layer, hyper network has been widely used in different fields. Random network that obeys Poisson distribution is one of the pioneering models studying complex networks. In the existing hyper network researches, the hyper network based on ER random graph is still a blank. In this paper, we first propose an ER random hyper network model which is based on the hypergraph structure and it adopts the ER random graph theory. Furthermore, using this model, the node hyper degree distribution of this hyper network model is analyzed theoretically, and the node hyper degree distribution is simulated under different hyper edge probabilities: $ p=0.004$, $ p=0.006$, $ p=0.008$ and $ p=0.01$. The results show that the node hyper degree distribution of this hyper network model complies to the Poisson distribution $p(k)\approx \dfrac{{{\left\langle \lambda \right\rangle }^{k}}}{k!}{{e}^{-\left\langle \lambda \right\rangle }}$, which conforms with the characteristics of random networks and is consistent with the theoretical derivation. Further, in order to more accurately and effectively describe the multiple heterogeneous relationship in real life, in this paper we construct three different kinds of double-layer hyper network models with node hyper degree distribution with bimodal peak characteristics. The three kinds respectively are ER-ER, BA-BA and BA-ER, where ER represents the ER random hyper network, and BA denotes the scale-free hyper network, and the layers are connected by a random manner. The analytical expressions of node hyper degree distribution of the three kinds of double-layer hyper network models are obtained by theoretical analysis, and the average node hyper degrees of the three double-layer hyper networks are closely related to the inter-layer hyper edge probability. As the inter-layer hyper edge probability increases, the average node hyper degree increases. The results of simulation experiments show that the node hyper degree distributions of three kinds of double-layer hyper network models proposed in this paper possess the characteristics of bimodal peaks. The ER random hyper network model and the double-layer hyper network model proposed in this paper provide the theories for further studying the hyper network entropy, hyper network dynamics, hyper network representation learning, hyper network link prediction, and traffic hyper network optimization of such hyper networks in the future, and also it has certain reference significance for studying the evolution of multilayer hyper networks.
      通信作者: 赵海兴, h.x.zhao@163.com ; 胡枫, qhhuf@163.com
    • 基金项目: 国家自然科学基金(批准号: 11661069, 61663041)、青海省科技计划项目(批准号: 2018-ZJ-777)和教育部春晖项目(批准号: Z2016101)资助的课题
      Corresponding author: Zhao Hai-Xing, h.x.zhao@163.com ; Hu Feng, qhhuf@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11661069, 61663041), the Science and Technology Plan of Qinghai Province, China (Grant No. 2018-ZJ-777), and the Chun Hui Project from the Ministry of Education of China (Grant No. Z2016101)
    [1]

    Wuchty S 2001 Mol. Biol. Evol. 18 1694Google Scholar

    [2]

    Wasserman S, Faust K 1994 Social Network Analysis (Cambridge: Cambridge University Press) pp1−66

    [3]

    汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) 第194 −226页

    Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Beijing: Higher Education Press) pp194−226 (in Chinese)

    [4]

    Wang P, Xu B W, Wu Y R, Zhou X Y 2015 Sci. Chin. Inf. 58 011101

    [5]

    Lü L Y, Zhou T 2011 Phys. A 390 1150Google Scholar

    [6]

    Liben-Nowell D, Kleinberg J 2007 J. Am. Soc. Inf. Sci. Technol. 58 1019Google Scholar

    [7]

    Newman M E J 2001 Proc. Natl. Acad. Sci. 98 404Google Scholar

    [8]

    Zhou T, Wang B H, Jin Y D, He D R, Zhang P P, He Y, Su B B, Chen K, Zhang Z Z, Liu J G 2007 Int. J. Mod. Phys. C 18 297Google Scholar

    [9]

    Berge C 1973 Graphs and Hypergraphs (New York: American Elsevier Publishing Company, Inc.) pp389−425

    [10]

    Camarinha-Matos L M, Afsarmanesh H 2003 Comput. Ind. 51 139Google Scholar

    [11]

    Wu Z Y, Duan J Q, Fu X C 2014 Appl. Math. Modell. 38 2961Google Scholar

    [12]

    胡枫, 赵海兴, 何佳倍, 李发旭, 李淑玲, 张子柯 2013 物理学报 62 198901Google Scholar

    Hu F, Zhao H X, He J B, Li F X, Li S L, Zhang Z K 2013 Acta Phys. Sin. 62 198901Google Scholar

    [13]

    Estrada E, Rodríguez-Velázquez J A 2006 Phys. A 364 581Google Scholar

    [14]

    Ghoshal G, Zlatić V, Caldarelli G, Newman M E J 2009 Phys. Rev. E 79 066118Google Scholar

    [15]

    Zlatić V, Ghoshal G, Caldarelli G 2009 Phys. Rev. E 80 036118Google Scholar

    [16]

    Zhang Z K, Liu C 2010 J. Stat. Mech. 10 1742

    [17]

    Wang J W, Rong L L, Deng Q H 2010 Eur. Phys. J. B 77 493Google Scholar

    [18]

    胡枫, 赵海兴, 马秀娟 2013 中国科学: 物理学 力学 天文学 43 16

    Hu F, Zhao H X, Ma X J 2013 Sci. China, Ser. G 43 16

    [19]

    郭进利, 祝昕昀 2014 物理学报 63 090207Google Scholar

    Guo J L, Zhu X J 2014 Acta Phys. Sin. 63 090207Google Scholar

    [20]

    索琪, 郭进利 2017 系统工程理论与实践 37 720Google Scholar

    Suo Q, Guo J L 2017 System Eng. Theor. Prac. 37 720Google Scholar

    [21]

    Zhou Z, Jin Z, Jin J 2019 J. Phys. A 123 765

    [22]

    李甍娜, 郭进利, 卞闻, 常宁戈, 肖潇, 陆睿敏 2017 复杂系统与复杂性科学 4 66

    Li M N, Guo J L, Bian W, Chang N G, Xiao X, Lu R M 2017 Complex Systems and Complexity Science 4 66

    [23]

    胡枫, 刘猛, 赵静 2018 复杂系统与复杂性科学 4 31

    Hu F, Liu M, Zhao J 2018 Complex Systems and Complexity Science 4 31

    [24]

    Fang J Q, Liu Q H, Tang M 2016 JAAC 6 12Google Scholar

    [25]

    刘强, 方锦清, 李永 2015 复杂系统与复杂性科学 12 64

    Liu Q, Fang J Q, Li Y 2015 Complex Systems and Complexity Science 12 64

    [26]

    Boccaletti S, Bianconi G, Criado R 2014 Phys. Rep. 544 1Google Scholar

    [27]

    蒋文君, 刘润然, 范天龙, 刘霜霜, 吕琳媛 2020 物理学报 69 088904Google Scholar

    Jiang W J, Liu R R, Fan T L, Liu S S, Lü L Y 2020 Acta Phys. Sin. 69 088904Google Scholar

    [28]

    杨喜艳, 吴亚豪, 张家军 2019 电子科技大学学报 10 12178

    Yang X Y, Wu Y H, Zhang J J 2019 J. Elec. Sci. Tech. Univ. 10 12178

    [29]

    Erdös P, Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [30]

    Xu X P, Liu F 2008 Phys. Lett. A 372 6727Google Scholar

    [31]

    Xue X F 2017 Phys. A 486 434Google Scholar

    [32]

    Lima F W S, Sousa A O, Sumuor M A 2008 Phys. A 387 3503Google Scholar

    [33]

    Zehmakan A N 2020 Discrete. Appl. Math. 277 280Google Scholar

    [34]

    李炎, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏 2013 物理学报 62 046401Google Scholar

    Li Y, Tang G, Song L J, Xu Z P, Xia H, Hao D P 2013 Acta Phys. Sin. 62 046401Google Scholar

  • 图 1  “航空-铁路”双层超网络模型

    Fig. 1.  Airline-Railway double-layer hyper network.

    图 2  500个节点的随机3均匀超网络在不同连接概率p值时的节点超度分布 (a) $p = 0.004$; (b) $p = 0.006$; (c) $p = 0.008$; (d) $p = 0.01$

    Fig. 2.  The hyper degree distribution of 3-uniform random hyper networks under different p: (a) $p = 0.004$; (b) $p = 0.006$; (c) $p = 0.008$; (d) $p = 0.01$.

    图 3  双层3均匀EE超网络在不同层间超边连接概率时的节点超度分布 (a)${p_{12}} = 0.001$; (b)${p_{12}} = 0.01$

    Fig. 3.  The EE hyper degree distribution of double-layer 3-uniform hyper network under different ${p_{12}}$: (a)${p_{12}} = 0.001$; (b)${p_{12}} = 0.01$.

    图 4  双层3均匀BB超网络节点超度分布 (a)${p_{12}} = 0.001$; (b)${p_{12}} = 0.01$

    Fig. 4.  The BB hyper degree distribution of double-layer 3-uniform hyper network under different ${p_{12}}$: (a)${p_{12}} = 0.001$; (b)${p_{12}} = 0.01$.

    图 5  双层3均匀BE超网络模型节点超度分布 (a)${p_{12}} = 0.001$; (b)${p_{12}} = 0.01$

    Fig. 5.  The BE hyper degree distribution of double-layer 3-uniform hyper network under different ${p_{12}}$: (a)${p_{12}} = 0.001$; (b)${p_{12}} = 0.01$.

    表 1  EE双层3均匀超网络实验统计

    Table 1.  Experimental statistics of EE hyper network.

    ${N_1}$${N_2}$N${p_1} = {p_2}$${p_{12}}$M$\left\langle {{k_1}} \right\rangle $$\left\langle {{k_2}} \right\rangle $$\left\langle k \right\rangle $
    50050010000.0060.00162375870994932
    0.01623750199232402616
    下载: 导出CSV

    表 2  BB双层3均匀超网络实验统计

    Table 2.  Experimental statistics of BB hyper network.

    ${N_1}$${N_2}$N${m_{10}} = {m_{20}}$${p_{12}}$M$\left\langle {{k_1}} \right\rangle $$\left\langle {{k_2}} \right\rangle $$\left\langle k \right\rangle $
    500500100030.00162375126251188
    0.01623750199232402616
    下载: 导出CSV

    表 3  BE双层3均匀超网络实验统计

    Table 3.  Experimental statistics of BE hyper network.

    ${N_1}$${N_2}$N${m_{10}}$${p_2}$${p_{12}}$M$\left\langle {{k_1}} \right\rangle $$\left\langle {{k_2}} \right\rangle $$\left\langle k \right\rangle $
    500500100030.0060.00162375126994560
    0.01623750124932402244
    下载: 导出CSV
  • [1]

    Wuchty S 2001 Mol. Biol. Evol. 18 1694Google Scholar

    [2]

    Wasserman S, Faust K 1994 Social Network Analysis (Cambridge: Cambridge University Press) pp1−66

    [3]

    汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) 第194 −226页

    Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Beijing: Higher Education Press) pp194−226 (in Chinese)

    [4]

    Wang P, Xu B W, Wu Y R, Zhou X Y 2015 Sci. Chin. Inf. 58 011101

    [5]

    Lü L Y, Zhou T 2011 Phys. A 390 1150Google Scholar

    [6]

    Liben-Nowell D, Kleinberg J 2007 J. Am. Soc. Inf. Sci. Technol. 58 1019Google Scholar

    [7]

    Newman M E J 2001 Proc. Natl. Acad. Sci. 98 404Google Scholar

    [8]

    Zhou T, Wang B H, Jin Y D, He D R, Zhang P P, He Y, Su B B, Chen K, Zhang Z Z, Liu J G 2007 Int. J. Mod. Phys. C 18 297Google Scholar

    [9]

    Berge C 1973 Graphs and Hypergraphs (New York: American Elsevier Publishing Company, Inc.) pp389−425

    [10]

    Camarinha-Matos L M, Afsarmanesh H 2003 Comput. Ind. 51 139Google Scholar

    [11]

    Wu Z Y, Duan J Q, Fu X C 2014 Appl. Math. Modell. 38 2961Google Scholar

    [12]

    胡枫, 赵海兴, 何佳倍, 李发旭, 李淑玲, 张子柯 2013 物理学报 62 198901Google Scholar

    Hu F, Zhao H X, He J B, Li F X, Li S L, Zhang Z K 2013 Acta Phys. Sin. 62 198901Google Scholar

    [13]

    Estrada E, Rodríguez-Velázquez J A 2006 Phys. A 364 581Google Scholar

    [14]

    Ghoshal G, Zlatić V, Caldarelli G, Newman M E J 2009 Phys. Rev. E 79 066118Google Scholar

    [15]

    Zlatić V, Ghoshal G, Caldarelli G 2009 Phys. Rev. E 80 036118Google Scholar

    [16]

    Zhang Z K, Liu C 2010 J. Stat. Mech. 10 1742

    [17]

    Wang J W, Rong L L, Deng Q H 2010 Eur. Phys. J. B 77 493Google Scholar

    [18]

    胡枫, 赵海兴, 马秀娟 2013 中国科学: 物理学 力学 天文学 43 16

    Hu F, Zhao H X, Ma X J 2013 Sci. China, Ser. G 43 16

    [19]

    郭进利, 祝昕昀 2014 物理学报 63 090207Google Scholar

    Guo J L, Zhu X J 2014 Acta Phys. Sin. 63 090207Google Scholar

    [20]

    索琪, 郭进利 2017 系统工程理论与实践 37 720Google Scholar

    Suo Q, Guo J L 2017 System Eng. Theor. Prac. 37 720Google Scholar

    [21]

    Zhou Z, Jin Z, Jin J 2019 J. Phys. A 123 765

    [22]

    李甍娜, 郭进利, 卞闻, 常宁戈, 肖潇, 陆睿敏 2017 复杂系统与复杂性科学 4 66

    Li M N, Guo J L, Bian W, Chang N G, Xiao X, Lu R M 2017 Complex Systems and Complexity Science 4 66

    [23]

    胡枫, 刘猛, 赵静 2018 复杂系统与复杂性科学 4 31

    Hu F, Liu M, Zhao J 2018 Complex Systems and Complexity Science 4 31

    [24]

    Fang J Q, Liu Q H, Tang M 2016 JAAC 6 12Google Scholar

    [25]

    刘强, 方锦清, 李永 2015 复杂系统与复杂性科学 12 64

    Liu Q, Fang J Q, Li Y 2015 Complex Systems and Complexity Science 12 64

    [26]

    Boccaletti S, Bianconi G, Criado R 2014 Phys. Rep. 544 1Google Scholar

    [27]

    蒋文君, 刘润然, 范天龙, 刘霜霜, 吕琳媛 2020 物理学报 69 088904Google Scholar

    Jiang W J, Liu R R, Fan T L, Liu S S, Lü L Y 2020 Acta Phys. Sin. 69 088904Google Scholar

    [28]

    杨喜艳, 吴亚豪, 张家军 2019 电子科技大学学报 10 12178

    Yang X Y, Wu Y H, Zhang J J 2019 J. Elec. Sci. Tech. Univ. 10 12178

    [29]

    Erdös P, Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17

    [30]

    Xu X P, Liu F 2008 Phys. Lett. A 372 6727Google Scholar

    [31]

    Xue X F 2017 Phys. A 486 434Google Scholar

    [32]

    Lima F W S, Sousa A O, Sumuor M A 2008 Phys. A 387 3503Google Scholar

    [33]

    Zehmakan A N 2020 Discrete. Appl. Math. 277 280Google Scholar

    [34]

    李炎, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏 2013 物理学报 62 046401Google Scholar

    Li Y, Tang G, Song L J, Xu Z P, Xia H, Hao D P 2013 Acta Phys. Sin. 62 046401Google Scholar

  • [1] 高彦丽, 徐维南, 周杰, 陈世明. 二元双层耦合网络渗流行为分析. 物理学报, 2024, 73(16): 168901. doi: 10.7498/aps.73.20240454
    [2] 刘波, 曾钰洁, 杨荣湄, 吕琳媛. 高阶网络统计指标综述. 物理学报, 2024, 73(12): 128901. doi: 10.7498/aps.73.20240270
    [3] 陈蔚颖, 潘建臣, 韩文臣, 黄昌巍. 具有异质增益因子的超图上的演化公共品博弈. 物理学报, 2022, 71(11): 110201. doi: 10.7498/aps.70.20212436
    [4] 马金龙, 杜长峰, 隋伟, 许向阳. 基于耦合强度的双层网络数据传输能力. 物理学报, 2020, 69(18): 188901. doi: 10.7498/aps.69.20200181
    [5] 张晓军, 钟守铭. 网络规模衰减的随机生灭网络平均度. 物理学报, 2016, 65(23): 230201. doi: 10.7498/aps.65.230201
    [6] 马秀娟, 赵海兴, 胡枫. 基于超图的超网络相继故障分析. 物理学报, 2016, 65(8): 088901. doi: 10.7498/aps.65.088901
    [7] 韩华, 吴翎燕, 宋宁宁. 基于随机矩阵的金融网络模型. 物理学报, 2014, 63(13): 138901. doi: 10.7498/aps.63.138901
    [8] 郭进利. 非均齐超网络中标度律的涌现富者愈富导致幂律分布吗?. 物理学报, 2014, 63(20): 208901. doi: 10.7498/aps.63.208901
    [9] 郭进利, 祝昕昀. 超网络中标度律的涌现. 物理学报, 2014, 63(9): 090207. doi: 10.7498/aps.63.090207
    [10] 胡枫, 赵海兴, 何佳倍, 李发旭, 李淑玲, 张子柯. 基于超图结构的科研合作网络演化模型. 物理学报, 2013, 62(19): 198901. doi: 10.7498/aps.62.198901
    [11] 李海燕, 胡云安, 任建存, 朱敏, 刘亮. 非匹配不确定交叉严反馈超混沌系统神经网络反演同步. 物理学报, 2012, 61(14): 140502. doi: 10.7498/aps.61.140502
    [12] 钭斐玲, 胡延庆, 黎勇, 樊瑛, 狄增如. 空间网络上的随机游走. 物理学报, 2012, 61(17): 178901. doi: 10.7498/aps.61.178901
    [13] 郭永峰, 谭建国. 一类非线性神经网络系统的超阈值随机共振现象. 物理学报, 2012, 61(17): 170502. doi: 10.7498/aps.61.170502
    [14] 肖思国, 阳效良, 丁建文. Er3+,Er3+/Yb3+掺杂氟化镧超微材料的光谱特性与上转换发光. 物理学报, 2009, 58(6): 3812-3820. doi: 10.7498/aps.58.3812
    [15] 邓传鲁, 顾铮珗. 材料色散对LPFG双峰谐振效应特性的影响. 物理学报, 2009, 58(5): 3230-3237. doi: 10.7498/aps.58.3230
    [16] 秦 洁, 于洪洁. 超混沌R?ssler系统构成的星形网络的混沌同步. 物理学报, 2007, 56(12): 6828-6835. doi: 10.7498/aps.56.6828
    [17] 周小荣, 罗晓曙, 蒋品群, 袁五届. 小世界神经网络的二次超谐波随机共振. 物理学报, 2007, 56(10): 5679-5683. doi: 10.7498/aps.56.5679
    [18] 吴忠强, 谭拂晓, 王绍仙. 基于无源化的细胞神经网络超混沌系统同步. 物理学报, 2006, 55(4): 1651-1658. doi: 10.7498/aps.55.1651
    [19] 张锡娟, 成海英, 杨翠红, 王维. 超交换作用对Er3Ga5O12的磁特性的影响. 物理学报, 2004, 53(5): 1507-1509. doi: 10.7498/aps.53.1507
    [20] 蔡 理, 马西奎, 王 森. 量子细胞神经网络的超混沌特性研究. 物理学报, 2003, 52(12): 3002-3006. doi: 10.7498/aps.52.3002
计量
  • 文章访问数:  7396
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-04
  • 修回日期:  2020-08-31
  • 上网日期:  2020-12-22
  • 刊出日期:  2021-01-05

/

返回文章
返回