-
复杂网络是描述和理解现实世界中复杂系统的有力工具. 近年来, 为了更准确地描述复杂网络中的交互关系, 或者从高阶视角分析成对交互作用网络, 许多学者开始使用高阶网络进行建模, 并在研究其动力学过程中发现了与成对交互作用网络不同的新现象. 然而, 与成对交互作用网络相比, 高阶网络的研究相对较少; 而且, 高阶网络结构相对复杂, 基于结构的统计指标定义较为分散且形式不统一, 这些都给描述高阶网络的拓扑结构特征带来了困难. 鉴于此, 本文综述了两种最常见的高阶网络——超图和单纯形网络——常用的统计指标及其物理意义. 本文有助于加深对高阶网络的理解, 促进对高阶网络结构特征的定量化研究, 也有助于研究者在此基础上开发更多适用于高阶网络的统计指标.Complex networks serve as indispensable instruments for characterizing and understanding intricate real-world systems. Recently, researchers have delved into the realm of higher-order networks, seeking to delineate interactions within these networks with greater precision or analyze traditional pairwise networks from a higher-dimensional perspective. This effort has unearthed some new phenomena different from those observed in the traditional pairwise networks. However, despite the importance of higher-order networks, research in this area is still in its infancy. In addition, the complexity of higher-order interactions and the lack of standardized definitions for structure-based statistical indicators, also pose challenges to the investigation of higher-order networks. In recognition of these challenges, this paper presents a comprehensive survey of commonly employed statistics and their underlying physical significance in two prevalent types of higher-order networks: hypergraphs and simplicial complex networks. This paper not only outlines the specific calculation methods and application scenarios of these statistical indicators, but also provides a glimpse into future research trends. This comprehensive overview serves as a valuable resource for beginners or cross-disciplinary researchers interested in higher-order networks, enabling them to swiftly grasp the fundamental statistics pertaining to these advanced structures. By promoting a deeper understanding of higher-order networks, this paper facilitates quantitative analysis of their structural characteristics and provides guidance for researchers who aim to develop new statistical methods for higher-order networks.
-
Keywords:
- higher-order network /
- hypergraph /
- simplicial network /
- statistics
[1] Marin A, Wellman B 2011 Social network analysis: An introduction (London: SAGE publications) pp11−25
[2] Kossinets G, Watts D J 2006 Science 311 88Google Scholar
[3] Alon U 2003 Science 301 1866Google Scholar
[4] Alm E, Arkin A P 2003 Curr. Opin. Struct. Biol. 13 193Google Scholar
[5] Bose A, Clements K A 1987 Proc. IEEE 75 1607Google Scholar
[6] Wu F F, Varaiya P 1999 Int. J. Electr. Power Energy Syst. 21 75Google Scholar
[7] Williams J C, Mahmassani H S, Herman R 1987 Transp. Res. Rec. 1112 78
[8] Verma T, Araújo N A, Herrmann H J 2014 Sci. Rep. 4 5638Google Scholar
[9] Strogatz S H 2001 Nature 410 268Google Scholar
[10] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar
[11] Costa L D F, Rodrigues F A, Travieso G, Villas Boas P R 2007 Adv. Phys. 56 167Google Scholar
[12] Barabási A L 2013 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371 20120375Google Scholar
[13] 汪小帆, 李翔, 陈关荣 2012 网络科学导论 (高等教育出版社) 第82页
Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Higher Education Press) p82
[14] 周涛, 柏文洁, 汪秉宏, 刘之景, 严钢 2005 物理 34 31Google Scholar
Zhou T, Bai W J, Wang B H, Liu Z J, Yan G 2005 Physics 34 31Google Scholar
[15] Courtney O T, Bianconi G 2017 Phys. Rev. E 95 062301Google Scholar
[16] Lung R I, Gaskó N, Suciu M A 2018 Scientometrics 117 1361Google Scholar
[17] Pearcy N, Crofts J J, Chuzhanova N 2014 Int. J. Biol. Vet. Agric. Food Eng. 8 752
[18] Mastrandrea R, Fournet J, Barrat A 2015 PloS One 10 e0136497Google Scholar
[19] Stehlé J, Voirin N, Barrat A, et al. 2011 PloS One 6 e23176Google Scholar
[20] Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G, Petri G 2020 Phys. Rep. 874 1Google Scholar
[21] Battiston F, Amico E, Barrat A, et al. 2021 Nat. Phys. 17 1093Google Scholar
[22] Bianconi G 2021 Higher-order Networks (Cambridge: Cambridge University Press) pp7–45
[23] Shi D, Chen G 2022 Natl. Sci. Rev. 9 nwac038Google Scholar
[24] Zhao D, Li R, Peng H, Zhong M, Wang W 2022 Chaos Solit. Fractals 155 111701Google Scholar
[25] Wang W, Li W, Lin T, Wu T, Pan L, Liu Y 2022 Appl. Math. Comput. 420 126793Google Scholar
[26] Millán A P, Torres J J, Bianconi G 2020 Phys. Rev. Lett. 124 218301Google Scholar
[27] Lucas M, Cencetti G, Battiston F 2020 Phys. Rev. Res. 2 033410Google Scholar
[28] Iacopini I, Petri G, Barrat A, Latora V 2019 Nat. Commun. 10 1Google Scholar
[29] Chowdhary S, Kumar A, Cencetti G, Iacopini I, Battiston F 2021 J. Phys.: Complex. 2 035019Google Scholar
[30] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀 2024 物理学报 73 038901Google Scholar
Chen H Y, Xu T, Liu C, Zhang Z K, Zhan X X 2024 Acta Phys. Sin. 73 038901Google Scholar
[31] Gómez-Gardenes J, Gómez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701Google Scholar
[32] Kovalenko K, Dai X, Alfaro-Bittner K, Raigorodskii A, Perc M, Boccaletti S 2021 Phys. Rev. Lett. 127 258301Google Scholar
[33] Tanaka T, Aoyagi T 2011 Phys. Rev. Lett. 106 224101Google Scholar
[34] Zhang Y, Latora V, Motter A E 2021 Commun. Phys. 4 195Google Scholar
[35] Kundu S, Ghosh D 2022 Phys. Rev. E 105 L042202Google Scholar
[36] Bick C, Ashwin P, Rodrigues A 2016 Chaos 26 094814Google Scholar
[37] Wang W, Wang Z X, Cai S M 2018 Phys. Rev. E 98 052312Google Scholar
[38] Guilbeault D, Becker J, Centola D 2018 Complex Spreading Phenomena in Social Systems (Cham: Springer) pp3−25
[39] Wang W, Liu Q H, Liang J, Hu Y, Zhou T 2019 Phys. Rep. 820 1Google Scholar
[40] Wang D, Zhao Y, Luo J, Leng H 2021 Chaos: Interdiscip. J. Nonlinear Sci. 31 053112Google Scholar
[41] 王兆慧, 沈华伟, 曹婍, 程学旗 2011 软件学报 33 171Google Scholar
Wang Z H, Shen H W, Cao Q, Cheng X Q 2011 J. Softw. 33 171Google Scholar
[42] Lü L, Chen D, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar
[43] 任晓龙, 吕琳媛 2014 科学通报 59 1175Google Scholar
Ren X L, Lü L Y 2014 Chin. Sci. Bull. 59 1175Google Scholar
[44] 李江, 刘影, 王伟, 周涛 2024 物理学报 73 048901Google Scholar
Li J, Liu Y, Wang W, Zhou T 2024 Acta Phys. Sin. 73 048901Google Scholar
[45] Lü L, Zhou T 2011 Phys. A: Stat. Mech. Appl. 390 1150Google Scholar
[46] Liu B, Yang R, Lü L 2023 Chaos: Interdiscip. J. Nonlinear Sci. 33 083108Google Scholar
[47] 吕琳媛 2010 电子科技大学学报 39 651Google Scholar
Lü L Y 2010 J. Univ. Electron. Sci. Technol. China 39 651Google Scholar
[48] Newman M E 2006 Proc. Natl. Acad. Sci. 103 8577Google Scholar
[49] Jiang Y, Jia C, Yu J 2013 Phys. A: Stat. Mech. Appl. 392 2182Google Scholar
[50] Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar
[51] Barabási A L, Albert R 1999 Science 286 509Google Scholar
[52] 许小可, 崔文阔, 崔丽艳, 肖婧, 尚可可 2019 电子科技大学学报 48 122Google Scholar
Xu X K, Cui W K, Cui L Y, Xiao J, Shang K K 2019 J. Univ. Electron. Sci. Technol. China 48 122Google Scholar
[53] Zeng Y, Liu B, Zhou F, Lü L 2023 Entropy 25 1390Google Scholar
[54] Bick C, Gross E, Harrington H A, Schaub M T 2023 SIAM Rev. 65 686Google Scholar
[55] Feng Y, You H, Zhang Z, Ji R, Gao Y 2019 Proceedings of the AAAI Conference on Artificial Intelligence 33 3558Google Scholar
[56] Zhu J, Zhu J, Ghosh S, Wu W, Yuan J 2018 IEEE Trans. Netw. Sci. Eng. 6 801Google Scholar
[57] Viñas R, Joshi C K, Georgiev D, Lin P, Dumitrascu B, Gamazon E R, Liò P 2023 Nat. Mach. Intell. 5 739Google Scholar
[58] Huang J, Zhang S, Yang F, Yu T, Prasad L N, Guduri M, Yu K 2023 IEEE Trans. Consum. Electron. 1 1775Google Scholar
[59] Ruggeri N, Contisciani M, Battiston F, De Bacco C 2023 Sci. Adv. 9 eadg9159Google Scholar
[60] Wu H, Li N, Zhang J, Chen S, Ng M K, Long J 2024 Pattern Recognit. 146 109995Google Scholar
[61] Mancastroppa M, Iacopini I, Petri G, Barrat A 2023 Nat. Commun. 14 6223Google Scholar
[62] Gao Y, Feng Y, Ji S, Ji R 2022 IEEE Trans. Pattern Anal. Mach. Intell. 45 3181Google Scholar
[63] Li Z, Deng Z, Han Z, Alfaro-Bittner K, Barzel B, Boccaletti S 2021 Chaos Solit. Fractals 152 111307Google Scholar
[64] Gambuzza L V, Di Patti F, Gallo L, et al. 2021 Nat. Commun. 12 1255Google Scholar
[65] Wang H, Ma C, Chen H S, Lai Y C, Zhang H F 2022 Nat. Commun. 13 3043Google Scholar
[66] Benson A R, Abebe R, Schaub M T, Jadbabaie A, Kleinberg J 2018 Proc. Natl. Acad. Sci. 115 E11221Google Scholar
[67] Shi D, Chen Z, Sun X, Chen Q, Ma C, Lou Y, Chen G 2021 Commun. Phys. 4 249Google Scholar
[68] Reimann M W, Nolte M, Scolamiero M, et al. 2017 Front. Comput. Neurosci. 11 48Google Scholar
[69] Sizemore A E, Giusti C, Kahn A, Vettel J M, Betzel R F, Bassett D S 2018 J. Comput. Neurosci. 44 115Google Scholar
[70] Kovalenko K, Sendiña-Nadal I, Khalil N, et al. 2021 Commun. Phys. 4 43Google Scholar
[71] Holland P W, Leinhardt S 1971 Comp. Group Stud. 2 107Google Scholar
[72] Estrada E, Rodríguez-Velázquez J A 2006 Phys. A: Stat. Mech. Appl. 364 581Google Scholar
[73] Carletti T, Battiston F, Cencetti G, Fanelli D 2020 Phys. Rev. E 101 022308Google Scholar
[74] Carletti T, Fanelli D, Lambiotte R 2021 J. Phys.: Complex. 2 015011Google Scholar
[75] Aksoy S G, Joslyn C, Marrero C O, Praggastis B, Purvine E 2020 EPJ Data Sci. 9 16Google Scholar
[76] Lu L, Peng X 2013 Internet Math. 9 3Google Scholar
[77] Vasilyeva E, Romance M, Samoylenko I, Kovalenko K, Musatov D, Raigorodskii A M, Boccaletti S 2023 Entropy 25 923Google Scholar
[78] Gao J, Zhao Q, Ren W, Swami A, Ramanathan R, Bar-Noy A 2014 IEEE/ACM Trans. Netw. 23 1805Google Scholar
[79] Zlatić V, Ghoshal G, Caldarelli G 2009 Phys. Rev. E 80 036118Google Scholar
[80] Bauer F, Hua B, Jost J, Liu S, Wang G 2017 Modern Approaches to Discrete Curvature (Cham: Springer) pp1−62
[81] Samal A, Sreejith R, Gu J, Liu S, Saucan E, Jost J 2018 Sci. Rep. 8 8650Google Scholar
[82] Leal W, Restrepo G, Stadler P F, Jost J 2021 Adv. Complex Syst. 24 2150003Google Scholar
[83] Eidi M, Farzam A, Leal W, Samal A, Jost J 2020 Theory Biosci. 139 337Google Scholar
[84] Bauer F, J Jost, S Liu 2012 Math. Res. Lett. 19 1185
[85] Eidi M, Jost J 2020 Sci. Rep. 10 12466Google Scholar
[86] Kapoor K, Sharma D, Srivastava J 2013 IEEE 2nd Network Science Workshop New York, USA, April 29–May 1, 2013 p152
[87] Granovetter M S 1973 Am. J. Sociol. 78 1360Google Scholar
[88] Dorogovtsev S N, Goltsev A V, Mendes J F F 2006 Phys. Rev. Lett. 96 040601Google Scholar
[89] Xiao Q 2013 Res. J. Appl. Sci. Eng. Technol. 5 568Google Scholar
[90] Lee J, Lee Y, Oh S M, Kahng B 2021 Chaos: Interdiscip. J. Nonlinear Sci. 31 061108Google Scholar
[91] Bonacich P 1972 J. Math. Sociol. 2 113Google Scholar
[92] Benson A R 2019 SIAM J. Math. Data Sci. 1 293Google Scholar
[93] Lemmens B, Nussbaum R 2012 Nonlinear Perron-frobenius Theory (Vol. 189) (Cambridge: Cambridge University Press) pp2−4
[94] Clausius R 1879 The Mechanical Theory of Heat (Macmillan) pp327−365
[95] Shannon C E 1948 Bell Syst. Tech. J. 27 379Google Scholar
[96] Bloch I, Bretto A 2019 Discrete Geometry for Computer Imagery: 21st IAPR International Conference Marne-la-Vallée, France, March 26–28, 2019 pp143–154
[97] Hu D, Li X L, Liu X G, Zhang S G 2019 Acta Math. Sin. Engl. Ser. 35 1238Google Scholar
[98] Wang H, Xiao G, Yan Y, Suter D 2018 IEEE Trans. Pattern Anal. Mach. Intell. 41 697Google Scholar
[99] Goldberg T E 2002 Sr. Thesis Bard Coll. 6 25
[100] Estrada E, Ross G J 2018 J. Theor. Biol. 438 46Google Scholar
[101] Serrano D H, Hernández-Serrano J, Gómez D S 2020 Chaos Solit. Fractals 137 109839Google Scholar
[102] Serrano D H, Gómez D S 2020 Appl. Math. Comput. 382 125331Google Scholar
[103] Bonacich P 2007 Soc. Netw. 29 555Google Scholar
[104] Katz L 1953 Psychometrika 18 39Google Scholar
[105] Estrada E, Knight P A 2015 A First Course in Network Theory (Oxford: Oxford University Press) pp157−160
[106] Okamoto K, Chen W, Li X Y 2008 International Workshop on Frontiers in Algorithmics Changsha China, June 19–21, 2008 pp186–195
[107] Newman M E 2005 Soc. Netw. 27 39Google Scholar
[108] Maletić S, Rajković M, Vasiljević D 2008 Computational Science–ICCS 2008: 8th International Conference Kraków Poland, June 23–25, 2008 pp568–575
[109] Shi D, Lü L, Chen G 2019 Natl. Sci. Rev. 6 962Google Scholar
-
图 2 单纯形网络相关示意图 (a) 一组时序高阶交互数据; (b) 一个11节点的单纯形网络; (c) 基于图(b)中单纯形网络的骨架网络; (d)一个11节点的团复形网络
Fig. 2. Correlation diagrams of the simplicial network: (a) A set of temporal higher-order interaction data; (b) a simplicial network with 11 nodes; (c) a skeleton network based on the simplicial network in Fig. 2(b); (d) a clique complex with 11 nodes.
表 1 基于超图的统计指标总结
Table 1. Summary of statistical indicators of the hypergraph
指标类型 指标名称 度相关指标 度、超度、超边度、余平均度 聚集系数 节点的聚集系数、网络的聚集系数 距离相关指标 路径长度、超节点之间的距离 密度相关指标 超边密度、超图密度 曲率相关指标 Forman-Ricci曲率、Ollivier-Ricci曲率 中心性指标 度中心性、核心度中心性、接近中心性、
介数中心性、特征向量中心性熵相关指标 超图熵、超图的香农熵、加权超图的超图熵 表 2 基于单纯形网络的统计指标总结
Table 2. Summary of statistical indicators of the simplicial network
指标类型 指标名称 度相关指标 上邻接度、下邻接度、度、上 p 邻接度、下 p 邻接度、严格上 p 邻接度、严格下 p 邻接度、
上$(h, p)$邻接度、下$(h, p)$邻接度、p 邻接度、最大 p 邻接度、最大单纯形度路径和距离相关指标 $s_k$游走、p 游走、最短路径长度、离心率、直径 中心性指标 度中心性、特征向量中心性、Katz中心性、接近中心性、介数中心性 聚集系数 聚集系数 拓扑不变量 贝蒂数、欧拉示性数 -
[1] Marin A, Wellman B 2011 Social network analysis: An introduction (London: SAGE publications) pp11−25
[2] Kossinets G, Watts D J 2006 Science 311 88Google Scholar
[3] Alon U 2003 Science 301 1866Google Scholar
[4] Alm E, Arkin A P 2003 Curr. Opin. Struct. Biol. 13 193Google Scholar
[5] Bose A, Clements K A 1987 Proc. IEEE 75 1607Google Scholar
[6] Wu F F, Varaiya P 1999 Int. J. Electr. Power Energy Syst. 21 75Google Scholar
[7] Williams J C, Mahmassani H S, Herman R 1987 Transp. Res. Rec. 1112 78
[8] Verma T, Araújo N A, Herrmann H J 2014 Sci. Rep. 4 5638Google Scholar
[9] Strogatz S H 2001 Nature 410 268Google Scholar
[10] Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175Google Scholar
[11] Costa L D F, Rodrigues F A, Travieso G, Villas Boas P R 2007 Adv. Phys. 56 167Google Scholar
[12] Barabási A L 2013 Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 371 20120375Google Scholar
[13] 汪小帆, 李翔, 陈关荣 2012 网络科学导论 (高等教育出版社) 第82页
Wang X F, Li X, Chen G R 2012 Network Science: An Introduction (Higher Education Press) p82
[14] 周涛, 柏文洁, 汪秉宏, 刘之景, 严钢 2005 物理 34 31Google Scholar
Zhou T, Bai W J, Wang B H, Liu Z J, Yan G 2005 Physics 34 31Google Scholar
[15] Courtney O T, Bianconi G 2017 Phys. Rev. E 95 062301Google Scholar
[16] Lung R I, Gaskó N, Suciu M A 2018 Scientometrics 117 1361Google Scholar
[17] Pearcy N, Crofts J J, Chuzhanova N 2014 Int. J. Biol. Vet. Agric. Food Eng. 8 752
[18] Mastrandrea R, Fournet J, Barrat A 2015 PloS One 10 e0136497Google Scholar
[19] Stehlé J, Voirin N, Barrat A, et al. 2011 PloS One 6 e23176Google Scholar
[20] Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G, Petri G 2020 Phys. Rep. 874 1Google Scholar
[21] Battiston F, Amico E, Barrat A, et al. 2021 Nat. Phys. 17 1093Google Scholar
[22] Bianconi G 2021 Higher-order Networks (Cambridge: Cambridge University Press) pp7–45
[23] Shi D, Chen G 2022 Natl. Sci. Rev. 9 nwac038Google Scholar
[24] Zhao D, Li R, Peng H, Zhong M, Wang W 2022 Chaos Solit. Fractals 155 111701Google Scholar
[25] Wang W, Li W, Lin T, Wu T, Pan L, Liu Y 2022 Appl. Math. Comput. 420 126793Google Scholar
[26] Millán A P, Torres J J, Bianconi G 2020 Phys. Rev. Lett. 124 218301Google Scholar
[27] Lucas M, Cencetti G, Battiston F 2020 Phys. Rev. Res. 2 033410Google Scholar
[28] Iacopini I, Petri G, Barrat A, Latora V 2019 Nat. Commun. 10 1Google Scholar
[29] Chowdhary S, Kumar A, Cencetti G, Iacopini I, Battiston F 2021 J. Phys.: Complex. 2 035019Google Scholar
[30] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀 2024 物理学报 73 038901Google Scholar
Chen H Y, Xu T, Liu C, Zhang Z K, Zhan X X 2024 Acta Phys. Sin. 73 038901Google Scholar
[31] Gómez-Gardenes J, Gómez S, Arenas A, Moreno Y 2011 Phys. Rev. Lett. 106 128701Google Scholar
[32] Kovalenko K, Dai X, Alfaro-Bittner K, Raigorodskii A, Perc M, Boccaletti S 2021 Phys. Rev. Lett. 127 258301Google Scholar
[33] Tanaka T, Aoyagi T 2011 Phys. Rev. Lett. 106 224101Google Scholar
[34] Zhang Y, Latora V, Motter A E 2021 Commun. Phys. 4 195Google Scholar
[35] Kundu S, Ghosh D 2022 Phys. Rev. E 105 L042202Google Scholar
[36] Bick C, Ashwin P, Rodrigues A 2016 Chaos 26 094814Google Scholar
[37] Wang W, Wang Z X, Cai S M 2018 Phys. Rev. E 98 052312Google Scholar
[38] Guilbeault D, Becker J, Centola D 2018 Complex Spreading Phenomena in Social Systems (Cham: Springer) pp3−25
[39] Wang W, Liu Q H, Liang J, Hu Y, Zhou T 2019 Phys. Rep. 820 1Google Scholar
[40] Wang D, Zhao Y, Luo J, Leng H 2021 Chaos: Interdiscip. J. Nonlinear Sci. 31 053112Google Scholar
[41] 王兆慧, 沈华伟, 曹婍, 程学旗 2011 软件学报 33 171Google Scholar
Wang Z H, Shen H W, Cao Q, Cheng X Q 2011 J. Softw. 33 171Google Scholar
[42] Lü L, Chen D, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1Google Scholar
[43] 任晓龙, 吕琳媛 2014 科学通报 59 1175Google Scholar
Ren X L, Lü L Y 2014 Chin. Sci. Bull. 59 1175Google Scholar
[44] 李江, 刘影, 王伟, 周涛 2024 物理学报 73 048901Google Scholar
Li J, Liu Y, Wang W, Zhou T 2024 Acta Phys. Sin. 73 048901Google Scholar
[45] Lü L, Zhou T 2011 Phys. A: Stat. Mech. Appl. 390 1150Google Scholar
[46] Liu B, Yang R, Lü L 2023 Chaos: Interdiscip. J. Nonlinear Sci. 33 083108Google Scholar
[47] 吕琳媛 2010 电子科技大学学报 39 651Google Scholar
Lü L Y 2010 J. Univ. Electron. Sci. Technol. China 39 651Google Scholar
[48] Newman M E 2006 Proc. Natl. Acad. Sci. 103 8577Google Scholar
[49] Jiang Y, Jia C, Yu J 2013 Phys. A: Stat. Mech. Appl. 392 2182Google Scholar
[50] Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar
[51] Barabási A L, Albert R 1999 Science 286 509Google Scholar
[52] 许小可, 崔文阔, 崔丽艳, 肖婧, 尚可可 2019 电子科技大学学报 48 122Google Scholar
Xu X K, Cui W K, Cui L Y, Xiao J, Shang K K 2019 J. Univ. Electron. Sci. Technol. China 48 122Google Scholar
[53] Zeng Y, Liu B, Zhou F, Lü L 2023 Entropy 25 1390Google Scholar
[54] Bick C, Gross E, Harrington H A, Schaub M T 2023 SIAM Rev. 65 686Google Scholar
[55] Feng Y, You H, Zhang Z, Ji R, Gao Y 2019 Proceedings of the AAAI Conference on Artificial Intelligence 33 3558Google Scholar
[56] Zhu J, Zhu J, Ghosh S, Wu W, Yuan J 2018 IEEE Trans. Netw. Sci. Eng. 6 801Google Scholar
[57] Viñas R, Joshi C K, Georgiev D, Lin P, Dumitrascu B, Gamazon E R, Liò P 2023 Nat. Mach. Intell. 5 739Google Scholar
[58] Huang J, Zhang S, Yang F, Yu T, Prasad L N, Guduri M, Yu K 2023 IEEE Trans. Consum. Electron. 1 1775Google Scholar
[59] Ruggeri N, Contisciani M, Battiston F, De Bacco C 2023 Sci. Adv. 9 eadg9159Google Scholar
[60] Wu H, Li N, Zhang J, Chen S, Ng M K, Long J 2024 Pattern Recognit. 146 109995Google Scholar
[61] Mancastroppa M, Iacopini I, Petri G, Barrat A 2023 Nat. Commun. 14 6223Google Scholar
[62] Gao Y, Feng Y, Ji S, Ji R 2022 IEEE Trans. Pattern Anal. Mach. Intell. 45 3181Google Scholar
[63] Li Z, Deng Z, Han Z, Alfaro-Bittner K, Barzel B, Boccaletti S 2021 Chaos Solit. Fractals 152 111307Google Scholar
[64] Gambuzza L V, Di Patti F, Gallo L, et al. 2021 Nat. Commun. 12 1255Google Scholar
[65] Wang H, Ma C, Chen H S, Lai Y C, Zhang H F 2022 Nat. Commun. 13 3043Google Scholar
[66] Benson A R, Abebe R, Schaub M T, Jadbabaie A, Kleinberg J 2018 Proc. Natl. Acad. Sci. 115 E11221Google Scholar
[67] Shi D, Chen Z, Sun X, Chen Q, Ma C, Lou Y, Chen G 2021 Commun. Phys. 4 249Google Scholar
[68] Reimann M W, Nolte M, Scolamiero M, et al. 2017 Front. Comput. Neurosci. 11 48Google Scholar
[69] Sizemore A E, Giusti C, Kahn A, Vettel J M, Betzel R F, Bassett D S 2018 J. Comput. Neurosci. 44 115Google Scholar
[70] Kovalenko K, Sendiña-Nadal I, Khalil N, et al. 2021 Commun. Phys. 4 43Google Scholar
[71] Holland P W, Leinhardt S 1971 Comp. Group Stud. 2 107Google Scholar
[72] Estrada E, Rodríguez-Velázquez J A 2006 Phys. A: Stat. Mech. Appl. 364 581Google Scholar
[73] Carletti T, Battiston F, Cencetti G, Fanelli D 2020 Phys. Rev. E 101 022308Google Scholar
[74] Carletti T, Fanelli D, Lambiotte R 2021 J. Phys.: Complex. 2 015011Google Scholar
[75] Aksoy S G, Joslyn C, Marrero C O, Praggastis B, Purvine E 2020 EPJ Data Sci. 9 16Google Scholar
[76] Lu L, Peng X 2013 Internet Math. 9 3Google Scholar
[77] Vasilyeva E, Romance M, Samoylenko I, Kovalenko K, Musatov D, Raigorodskii A M, Boccaletti S 2023 Entropy 25 923Google Scholar
[78] Gao J, Zhao Q, Ren W, Swami A, Ramanathan R, Bar-Noy A 2014 IEEE/ACM Trans. Netw. 23 1805Google Scholar
[79] Zlatić V, Ghoshal G, Caldarelli G 2009 Phys. Rev. E 80 036118Google Scholar
[80] Bauer F, Hua B, Jost J, Liu S, Wang G 2017 Modern Approaches to Discrete Curvature (Cham: Springer) pp1−62
[81] Samal A, Sreejith R, Gu J, Liu S, Saucan E, Jost J 2018 Sci. Rep. 8 8650Google Scholar
[82] Leal W, Restrepo G, Stadler P F, Jost J 2021 Adv. Complex Syst. 24 2150003Google Scholar
[83] Eidi M, Farzam A, Leal W, Samal A, Jost J 2020 Theory Biosci. 139 337Google Scholar
[84] Bauer F, J Jost, S Liu 2012 Math. Res. Lett. 19 1185
[85] Eidi M, Jost J 2020 Sci. Rep. 10 12466Google Scholar
[86] Kapoor K, Sharma D, Srivastava J 2013 IEEE 2nd Network Science Workshop New York, USA, April 29–May 1, 2013 p152
[87] Granovetter M S 1973 Am. J. Sociol. 78 1360Google Scholar
[88] Dorogovtsev S N, Goltsev A V, Mendes J F F 2006 Phys. Rev. Lett. 96 040601Google Scholar
[89] Xiao Q 2013 Res. J. Appl. Sci. Eng. Technol. 5 568Google Scholar
[90] Lee J, Lee Y, Oh S M, Kahng B 2021 Chaos: Interdiscip. J. Nonlinear Sci. 31 061108Google Scholar
[91] Bonacich P 1972 J. Math. Sociol. 2 113Google Scholar
[92] Benson A R 2019 SIAM J. Math. Data Sci. 1 293Google Scholar
[93] Lemmens B, Nussbaum R 2012 Nonlinear Perron-frobenius Theory (Vol. 189) (Cambridge: Cambridge University Press) pp2−4
[94] Clausius R 1879 The Mechanical Theory of Heat (Macmillan) pp327−365
[95] Shannon C E 1948 Bell Syst. Tech. J. 27 379Google Scholar
[96] Bloch I, Bretto A 2019 Discrete Geometry for Computer Imagery: 21st IAPR International Conference Marne-la-Vallée, France, March 26–28, 2019 pp143–154
[97] Hu D, Li X L, Liu X G, Zhang S G 2019 Acta Math. Sin. Engl. Ser. 35 1238Google Scholar
[98] Wang H, Xiao G, Yan Y, Suter D 2018 IEEE Trans. Pattern Anal. Mach. Intell. 41 697Google Scholar
[99] Goldberg T E 2002 Sr. Thesis Bard Coll. 6 25
[100] Estrada E, Ross G J 2018 J. Theor. Biol. 438 46Google Scholar
[101] Serrano D H, Hernández-Serrano J, Gómez D S 2020 Chaos Solit. Fractals 137 109839Google Scholar
[102] Serrano D H, Gómez D S 2020 Appl. Math. Comput. 382 125331Google Scholar
[103] Bonacich P 2007 Soc. Netw. 29 555Google Scholar
[104] Katz L 1953 Psychometrika 18 39Google Scholar
[105] Estrada E, Knight P A 2015 A First Course in Network Theory (Oxford: Oxford University Press) pp157−160
[106] Okamoto K, Chen W, Li X Y 2008 International Workshop on Frontiers in Algorithmics Changsha China, June 19–21, 2008 pp186–195
[107] Newman M E 2005 Soc. Netw. 27 39Google Scholar
[108] Maletić S, Rajković M, Vasiljević D 2008 Computational Science–ICCS 2008: 8th International Conference Kraków Poland, June 23–25, 2008 pp568–575
[109] Shi D, Lü L, Chen G 2019 Natl. Sci. Rev. 6 962Google Scholar
计量
- 文章访问数: 5289
- PDF下载量: 348
- 被引次数: 0