搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Sierpinski分形垫的确定性复杂网络演化模型研究

邢长明 刘方爱

引用本文:
Citation:

基于Sierpinski分形垫的确定性复杂网络演化模型研究

邢长明, 刘方爱

Research on the deterministic complex network model based on the Sierpinski network

Xing Chang-Ming, Liu Fang-Ai
PDF
导出引用
  • 近年来,人们发现大量真实网络都表现出小世界和无尺度的特性,由此复杂网络演化模型成为学术界研究的热点问题. 本文基于Sierpinski分形垫,通过迭代的方式构造了两个确定性增长的复杂网络模型,即小世界网络模型(S-DSWN)和无尺度网络模型(S-DSFN);其次,给出了确定性网络模型的迭代生成算法,解析计算了其主要拓扑特性,结果表明两个网络模型在度分布、集聚系数和网络直径等结构特性方面与许多现实网络相符合;最后,提出了一个确定性的统一模型(S-DUM),将S-DSWN与S-DSFN纳入到一个框架之下,为复
    In the last few years, the complex network has received considerable attention. It is proven that the small-word effect and scale-free property exist in various real-life networks. In this paper, based on the deterministic fractal—the Sierpinski gasket, two deterministic complex network evolving models, S-DSWN and S-DSFN, are proposed by iterative approach. S-DSWN can generate small-world network, while S-DSFN can generate scale-free networks. The iterative algorithms to generate the models are also designed. Then, some relevant characteristics of the networks, such as degree distribution, clustering coefficient, and diameter, are computed or predicted analytically, which match well with the characterizations of various real-life networks. Finally, an integrated model is introduced to unify S-DSWN and S-DSFN into the same framework, which makes it convenient to study the complexity of the real networked systems within the framework of complex network theory. Moreover, we have proven that these network models are maximal planar graphs.
    • 基金项目: 国家自然科学基金(批准号:90612003);山东省自然科学基金(批准号:Y2007G11)资助的课题.
    [1]

    [1]Strogatz S H 2001 Nature 410 268

    [2]

    [2]Albert R, Barabási A L 2002 Reviews of Modern Physics 74 47

    [3]

    [3]Dorogovtsev S N, Mendes J F F 2002 Advances in Physics 51 1079

    [4]

    [4]Wang X F 2002 Int. J. Bifurcat Chaos 12 885

    [5]

    [5]Newman M E J 2003 SIAM Review 45 167

    [6]

    [6]Watts D J, Strogatz S H 1998 Nature 393 440

    [7]

    [7]Barabási A L, Albert R 1999 Science 286 509

    [8]

    [8]Newman M E J, Watts D J 1999 Physics. Letters. A 263 341

    [9]

    [9]Newman M E J, Watts D J 1999 Physical Review E 60 7332

    [10]

    ]Liu jianguo, Dang yanzhong, Wang zhongtuo 2006 Chinese Physics Letters 23 46

    [11]

    ]Li X, Chen G R 2003 Physica A 328 274

    [12]

    ]Barabási A L, Ravasz E, Vicsek T 2001 Physica A 299 559

    [13]

    ]Comellas F, Ozón J, Peters J G 2000 Inf. Process. Lett. 76 83

    [14]

    ]Dorogovtsev S N, Goltsev A V, Mendes J F F 2002 Physical Review E 65 066122.

    [15]

    ]Andrade J S, Herrmann HJ, Andrade R F S. 2005 Physical Review Letters 94 018702

    [16]

    ]Zhang Z Z, Comellas F, Fertin G 2006 J.Phys.A: Math.Gen. 39 1811

    [17]

    ]Zhang Z Z, Lili Ronga, Francesc Comellas 2006 Physica A 364 618

    [18]

    ]Zhang Z Z, Rong L L, Zhou S G 2006 Physical Review E 74 046105.

    [19]

    ]Zhang Z Z, Zhou S G 2007 Eur. Phys. J. B 60 259

    [20]

    ]Zhang Z Z, Rong L L, Guo C H 2006 Physica A 363 567

    [21]

    ]Jost J, Joy M P 2002 Physical Review E 66 036126.

    [22]

    ]Haynes C P, Roberts A P 2008 Phys. Rev. E 78 041111

    [23]

    ]Majewski M 1998 Comput. & Graphics 22 129

    [24]

    ]Zhang Z Z 2007 EPL79 38007

    [25]

    ]Ravasz E, Barabási A L 2003 Physical Review E 67 026112

    [26]

    ]Zhou T, Yan G, Wang BH 2005 Phys. Rev. E 71 046141

    [27]

    ]Hambly B M 1997 Annals of probability 25 1059

  • [1]

    [1]Strogatz S H 2001 Nature 410 268

    [2]

    [2]Albert R, Barabási A L 2002 Reviews of Modern Physics 74 47

    [3]

    [3]Dorogovtsev S N, Mendes J F F 2002 Advances in Physics 51 1079

    [4]

    [4]Wang X F 2002 Int. J. Bifurcat Chaos 12 885

    [5]

    [5]Newman M E J 2003 SIAM Review 45 167

    [6]

    [6]Watts D J, Strogatz S H 1998 Nature 393 440

    [7]

    [7]Barabási A L, Albert R 1999 Science 286 509

    [8]

    [8]Newman M E J, Watts D J 1999 Physics. Letters. A 263 341

    [9]

    [9]Newman M E J, Watts D J 1999 Physical Review E 60 7332

    [10]

    ]Liu jianguo, Dang yanzhong, Wang zhongtuo 2006 Chinese Physics Letters 23 46

    [11]

    ]Li X, Chen G R 2003 Physica A 328 274

    [12]

    ]Barabási A L, Ravasz E, Vicsek T 2001 Physica A 299 559

    [13]

    ]Comellas F, Ozón J, Peters J G 2000 Inf. Process. Lett. 76 83

    [14]

    ]Dorogovtsev S N, Goltsev A V, Mendes J F F 2002 Physical Review E 65 066122.

    [15]

    ]Andrade J S, Herrmann HJ, Andrade R F S. 2005 Physical Review Letters 94 018702

    [16]

    ]Zhang Z Z, Comellas F, Fertin G 2006 J.Phys.A: Math.Gen. 39 1811

    [17]

    ]Zhang Z Z, Lili Ronga, Francesc Comellas 2006 Physica A 364 618

    [18]

    ]Zhang Z Z, Rong L L, Zhou S G 2006 Physical Review E 74 046105.

    [19]

    ]Zhang Z Z, Zhou S G 2007 Eur. Phys. J. B 60 259

    [20]

    ]Zhang Z Z, Rong L L, Guo C H 2006 Physica A 363 567

    [21]

    ]Jost J, Joy M P 2002 Physical Review E 66 036126.

    [22]

    ]Haynes C P, Roberts A P 2008 Phys. Rev. E 78 041111

    [23]

    ]Majewski M 1998 Comput. & Graphics 22 129

    [24]

    ]Zhang Z Z 2007 EPL79 38007

    [25]

    ]Ravasz E, Barabási A L 2003 Physical Review E 67 026112

    [26]

    ]Zhou T, Yan G, Wang BH 2005 Phys. Rev. E 71 046141

    [27]

    ]Hambly B M 1997 Annals of probability 25 1059

  • [1] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [2] 袁铭. 带有层级结构的复杂网络级联失效模型. 物理学报, 2014, 63(22): 220501. doi: 10.7498/aps.63.220501
    [3] 王亚奇, 王静, 杨海滨. 基于复杂网络理论的微博用户关系网络演化模型研究. 物理学报, 2014, 63(20): 208902. doi: 10.7498/aps.63.208902
    [4] 廖志贤, 罗晓曙. 基于小世界网络模型的光伏微网系统同步方法研究. 物理学报, 2014, 63(23): 230502. doi: 10.7498/aps.63.230502
    [5] 刘树新, 季新生, 刘彩霞, 郭虹. 一种信息传播促进网络增长的网络演化模型. 物理学报, 2014, 63(15): 158902. doi: 10.7498/aps.63.158902
    [6] 胡枫, 赵海兴, 何佳倍, 李发旭, 李淑玲, 张子柯. 基于超图结构的科研合作网络演化模型. 物理学报, 2013, 62(19): 198901. doi: 10.7498/aps.62.198901
    [7] 王丹, 井元伟, 郝彬彬. 加权方式对网络同步能力的影响. 物理学报, 2012, 61(17): 170513. doi: 10.7498/aps.61.170513
    [8] 于海涛, 王江, 刘晨, 车艳秋, 邓斌, 魏熙乐. 耦合小世界神经网络的随机共振. 物理学报, 2012, 61(6): 068702. doi: 10.7498/aps.61.068702
    [9] 崔爱香, 傅彦, 尚明生, 陈端兵, 周涛. 复杂网络局部结构的涌现:共同邻居驱动网络演化. 物理学报, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [10] 沈伟维, 李萍萍, 柯见洪. 小世界网络上的扩散限制的聚集-湮没反应动力学. 物理学报, 2010, 59(9): 6681-6688. doi: 10.7498/aps.59.6681
    [11] 宋玉蓉, 蒋国平. 节点抗攻击存在差异的无尺度网络恶意软件传播研究. 物理学报, 2010, 59(2): 705-711. doi: 10.7498/aps.59.705
    [12] 王光增, 曹一家, 包哲静, 韩祯祥. 一种新型电力网络局域世界演化模型. 物理学报, 2009, 58(6): 3597-3602. doi: 10.7498/aps.58.3597
    [13] 欧阳敏, 费 奇, 余明晖. 基于复杂网络的灾害蔓延模型评价及改进. 物理学报, 2008, 57(11): 6763-6770. doi: 10.7498/aps.57.6763
    [14] 郑鸿宇, 罗晓曙, 吴 雷. 变权小世界生物神经网络的兴奋及优化特性. 物理学报, 2008, 57(6): 3380-3384. doi: 10.7498/aps.57.3380
    [15] 甘正宁, 马 军, 张国勇, 陈 勇. 小世界网络上螺旋波失稳的研究. 物理学报, 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [16] 周小荣, 罗晓曙. 小世界生物神经网络的相干共振研究. 物理学报, 2008, 57(5): 2849-2853. doi: 10.7498/aps.57.2849
    [17] 郭进利. 新节点的边对网络无标度性影响. 物理学报, 2008, 57(2): 756-761. doi: 10.7498/aps.57.756
    [18] 林 海, 吴晨旭. 基于遗传算法的重复囚徒困境博弈策略在复杂网络中的演化. 物理学报, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
    [19] 杜海峰, 李树茁, W. F. Marcus, 悦中山, 杨绪松. 小世界网络与无标度网络的社区结构研究. 物理学报, 2007, 56(12): 6886-6893. doi: 10.7498/aps.56.6886
    [20] 李 季, 汪秉宏, 蒋品群, 周 涛, 王文旭. 节点数加速增长的复杂网络生长模型. 物理学报, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
计量
  • 文章访问数:  7698
  • PDF下载量:  966
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-06-03
  • 修回日期:  2009-07-02
  • 刊出日期:  2010-03-15

/

返回文章
返回