-
La-Co co-substituted M-type ferrite, which was first reported at the end of the 20th century, as the cornerstone of high-performance permanent magnet ferrites, has received increasing attention from researchers around the world. The unquenched orbital moments of Co2+ play a pivotal role in enhancing the uniaxial anisotropy of M-type ferrites. However, a comprehensive understanding of its microscopic mechanism remains elusive. In order to meet the increasing performance requirements of ferrite materials, it is imperative to clarify the mechanism behind the enhancement of magnetic anisotropy, and at the same time seek the guiding principles that are helpful to develop high-performance product quickly and economically. But its mechanism at a microscopic level has not been explained. This review comprehensively analyzes various studies aiming at pinpointing the crystal sites of Co substitution within the lattice. These investigations including neutron diffraction, nuclear magnetic resonance, and Mössbauer spectroscopy can reveal the fundamental origins behind the enhancement of magnetic anisotropy, thereby providing valuable insights for material design strategies aiming at further enhancing the magnetic properties of permanent magnet ferrites. The exploration of co-substitution sites has yielded noteworthy findings. Through careful examination and analysis, researchers have discovered the complex interplay between Co ions and the lattice structure, revealing the mechanisms of enhanced magnetic anisotropy. The current mainstream view is that Co ions tend to occupy more than one site, namely the 4f1, 12k, and 2a sites, all of which are located within the spinel lattice. However, there have also been differing viewpoints, implying that further exploration is needed to uncover the primary controlling factors influencing Co occupancy. It is worth noting that the identification of specific Co substitution sites, especially the spin-down tetrahedron 4f1, has achieved targeted modifications, ultimately fine-tuning the magnetic properties with remarkable precision. Furthermore, the reviewed research emphasizes the pivotal role of crystallographic engineering in tailoring the magnetic characteristics of ferrite materials. By strategically manipulating Co substitution, researchers have utilized the intrinsic properties of the lattice to amplify magnetic anisotropy, thereby unlocking new avenues for the advancement of permanent magnet ferrites. In conclusion, the collective findings outlined in this review herald a promising trajectory for the field of permanent magnet ferrites. With a detailed understanding of Co-substitution mechanisms, researchers are preparing to open up new avenues for developing next-generation ferrite materials with enhanced magnetic properties. -
Keywords:
- permanent magnet ferrite /
- La-Co substitution /
- magnetocrystalline anisotropy /
- Co occupancy
[1] Went J, Rathenau G, Gorter E, Van Oosterhout G 1952 Phy. Rev. 86 424
Google Scholar
[2] Went J J, Rathenau G W, Gorter E W, Oosterhout G W V 1952 Philips Tech. Rev. 13 194
[3] Granados-Miralles C, Jenuš P 2021 J. Phys. D Appl. Phys. 54 303001
Google Scholar
[4] Coey J M D 2002 J. Magn. Magn. Mater. 248 441
Google Scholar
[5] Pullar R C 2012 Prog. Mater. Sci. 57 1191
Google Scholar
[6] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821
Google Scholar
[7] de Julian Fernandez C, Sangregorio C, de la Figuera J, Belec B, Makovec D, Quesada A 2020 J. Phys. D Appl. Phys. 54 153001
Google Scholar
[8] Bollero A, Rial J, Villanueva M, Golasinski K M, Seoane A, Almunia J, Altimira R 2017 ACS Sustain. Chem. Eng. 5 3243
Google Scholar
[9] Iida K, Minachi Y, Masuzawa K, Kawakami M, Nishio H, Taguchi H 1999 J. Magn. Soc. Jpn. 23 1093
Google Scholar
[10] Coey J M 2014 J. Phys. Condens. Matter 26 064211
Google Scholar
[11] Cochardt A 1966 J. Appl. Phys. 37 1112
Google Scholar
[12] Taguchi H 1998 KONA Powder Part. J. 16 116
Google Scholar
[13] Goldman A 2006 Modern Ferrite Technology (New York: Springer Science & Business Media
[14] Went J 1952 Philips Tech. Rev. 13 361
[15] Stuijts A, Rathenau G, Weber G 1954 Philips Tech. Rev. 16 209
[16] Deshpande U S 2003 IEEE International Electric Machines and Drives Conference IEMDC'03 Madison, WI, USA, June 1-4, 2003 p509
[17] Chen C H, Yi P 2014 Proceedings of 2014 International Conference on NdFeB Magnets: Supply Chain, Critical Properties, & Applications Ningbo, China, March 2−5, 2014 p126
[18] Tech-Mag T https://www.tdk.com/en/tech-mag/ferrite02/012#section3 [2021-12-3]
[19] Coey J M D 2020 Engineering 6 119
Google Scholar
[20] Bollero A, Palmero E M 2022 Modern Permanent Magnets Chapter 3-Recent Advances in Hard-Ferrite Magnets ( Woodhead Publishing
[21] TDK https://product.tdk.com/en/system/files?file=dam/doc/product/magnet/magnet/ferrite/datasheets/magnet_fb_summary_en.pdf [2021-12-3]
[22] Hitachi Metals L http://www.hitachi-metals.co.jp/e/products/auto/el/p03_01_g.html [2021-12-3]
[23] TDK Ferrite Magnets Catalog https://product.tdk.com/en/products/magnet/magnet/ferrite/index.html [2021-12-3]
[24] 翁兴园 2021 新材料产业 4 32
Google Scholar
Weng X Y 2021 Adv. Mater. Indus. 4 32
Google Scholar
[25] 华经产业研究 https://baijiahao.baidu.com/s?id=1749074365467103880&wfr=spider&for=pc [2023-2-13]
[26] 陈羽峰, 徐斌 2022 磁性材料及器件 54 108
Google Scholar
Chen Y F, Xu B 2022 J. Mag. Mater. Dev. 54 108
Google Scholar
[27] 横店东磁磁性产品 http://www.chinadmegc.com/product/1.html [2024-1-28]
[28] 北矿磁材科技有限公司-烧结永磁铁氧体磁粉(BGRIMM Magnetic Materials & Technology Co. , Ltd) http://www.magmat.com/cpysc/yctytcf/index.htm [2022-11-15]
[29] 江益磁材湿式异方性铁氧体永磁产品结构http://www.jpmf.com.cn/displayproduct.html?id=3806471777899840 [2022-11-15]
[30] 安徽龙磁科技股份有限公司永磁铁氧体磁性能牌号表https://www.sinomagtech.com/cpzx/yctyt/ [2024-1-28]
[31] Hitachi catalogue http://www.hitachi-metals.co.jp/e/products/auto/el/p03_05.html [2022-11-15]
[32] 翁兴园 2013 新材料产业 4 31
Google Scholar
Weng X Y 2013 Adv. Mater. Indus. 4 31
Google Scholar
[33] Smit B J, Wijn H P 1959 Ferrites, Philips Technical Library (The Netherlands: Eindhoven
[34] Aminoff G 1925 Geologiska Fö reningen i Stockholm Fö rhandlingar 47 283
Google Scholar
[35] Adelsköld V 1938 Arkiv. Kemi. Min. Geol. 12a 1
[36] Harris V G, Geiler A, Chen Y, Yoon S D, Wu M, Yang A, Chen Z, He P, Parimi P V, Zuo X, Patton C E, Abe M, Acher O, Vittoria C 2009 J. Magn. Magn. Mater. 321 2035
Google Scholar
[37] Kojima H 1982 Handb. Ferromagn. Mater. 3 305
Google Scholar
[38] Kreisel J, Vincent H, Tasset F, Paté M, Ganne J P 2001 J. Magn. Magn. Mater. 224 17
Google Scholar
[39] Townes W, Fang J, Perrotta A 1967 Z. Krist. -Cryst. Mater. 125 437
Google Scholar
[40] Braun P B 1957 Philips Res. Rep. 12 491
[41] Bilovol V, Martínez-García R 2015 J. Phy. Chem. Solids 86 131
Google Scholar
[42] Harris V G 2012 IEEE T. Magn. 48 1075
Google Scholar
[43] Cullity B D, Graham C D 2011 Introduction to Magnetic Materials (Hoboken: John Wiley & Sons
[44] Jahn L, Müller H G 1969 Phys. Status Solidi B 35 723
Google Scholar
[45] Coey J M 2010 Magnetism and Magnetic Materials (Cambridge: Cambridge University Press
[46] Stäblein H 1982 Handb. Ferromagn. Mater. 3 441
Google Scholar
[47] Cui J, Kramer M, Zhou L, Liu F, Gabay A, Hadjipanayis G, Balasubramanian B, Sellmyer D 2018 Acta Mater. 158 118
Google Scholar
[48] Selvaraj S, Gandhi U, Berchmans L J, Mangalanathan U 2021 Mater. Tech. 36 36
Google Scholar
[49] Waki T 2022 J. Jpn. Soc. Powder Powder Metall. 69 149 (in Japanese
Google Scholar
[50] Mahmood S H, Abu-Aljarayesh I 2016 Hexaferrite Permanent Magnetic Materials (Materials Research Forum LLC
[51] Lisjak D, Mertelj A 2018 Prog. Mater. Sci. 95 286
Google Scholar
[52] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰 2024 物理学报 73 066104
Google Scholar
Ren Y Y, Li Y N, Liu H S, Xu N, Guo K, Xu Z H, Chen X, Gao J F 2024 Acta Phys. Sin. 73 066104
Google Scholar
[53] Rhein F, Helbig T, Neu V, Krispin M, Gutfleisch O 2018 Acta Mater. 146 85
Google Scholar
[54] Trukhanov A V, Kostishyn V G, Panina L V, Jabarov S H, Korovushkin V V, Trukhanov S V, Trukhanova E L 2017 Ceram. Int. 43 12822
Google Scholar
[55] Trukhanov S V, Trukhanov A V, Turchenko V A, Kostishyn V G, Panina L V, Kazakevich I S, Balagurov A M 2016 J. Alloy Compd. 689 383
Google Scholar
[56] Li J, Hong Y, He S, Li W K, Bai H, Xia Y H, Sun G A, Zhou Z X 2022 J. Adv. Ceram. 11 263
Google Scholar
[57] Nguyen H H, Jeong W H, Phan T L, Lee B W, Yang D S, Tran N, Dang N T 2021 J. Magn. Magn. Mater. 537 168195
Google Scholar
[58] Albanese G, Deriu A 1979 Ceram. Int. 5 3
Google Scholar
[59] Dionne G F 2009 Magnetic Oxides (New York: Springer
[60] Summergrad R N, Banks E 1957 J. Phys. Chem. Solids 2 312
Google Scholar
[61] Le Roux D, Vincent H, Joubert J C, Vallet-Regi M 1988 Mater. Res. Bull. 23 299
Google Scholar
[62] Ogata Y, Kubota Y, Takami T, Tokunaga M, Shinokara T 1999 IEEE T. Magn. 35 3334
Google Scholar
[63] Tenaud P, Morel A, Kools F, Le Breton J M, Lechevallier L 2004 J. Alloy Compd. 370 331
Google Scholar
[64] Kools F, Morel A, Grössinger R, Le Breton J M, Tenaud P 2002 J. Magn. Magn. Mater. 242-245 1270
Google Scholar
[65] Nishio H, Minachi Y, Yamamoto H 2009 IEEE T. Magn. 45 5281
Google Scholar
[66] Kikuchi T, Nakamura T, Yamasaki T, Nakanishi M, Fujii T, Takada J, Ikeda Y 2010 J. Magn. Magn. Mater. 322 2381
Google Scholar
[67] Nishio H, Yamamoto H 2011 IEEE T. Magn. 47 3641
Google Scholar
[68] Kobayashi Y, Hosokawa S, Oda E, Toyota S 2008 J. Jpn. Soc. Powder Powder Metall. 55 541
Google Scholar
[69] Du Y B, Liu Y, Lian L X, Du J 2019 J. Magn. Magn. Mater. 469 189
Google Scholar
[70] Chen Z, Wang F, Yan S, Nie Y, Feng Z, Chen Y, Harris V G, Zhang S 2014 J. Am. Ceram. Soc. 97 1873
Google Scholar
[71] Chen Z, Wang F, Yan S, Feng Z 2014 Mat. Sci. Eng. B 182 69
Google Scholar
[72] Zhu D, Geng Z, Liu R S, Zhou X, Jia L, Hu G, Wang Q, Li B 2020 Rare Metals 39 89
Google Scholar
[73] Li X, Yang W G, Bao D X, Meng X D, Lou B Y 2013 J. Magn. Magn. Mater. 329 1
Google Scholar
[74] Huang X, Liu X S, Yang Y J, Huang K, Niu X F, Jin D L, Gao S, Ma Y Q, Huang F, Lv F R, Feng S J 2015 J. Magn. Magn. Mater. 378 424
Google Scholar
[75] Yang Y J, Wang F H, Shao J X, Huang D H, Liu X X, Feng S J, Wen C E 2015 J. Magn. Magn. Mater. 384 64
Google Scholar
[76] Kang Y M, Moon K S 2015 Ceram. Int. 41 12828
Google Scholar
[77] Lotgering F K 1974 J. Phys. Chem. Solids 35 1633
Google Scholar
[78] Deschamps A, Bertaut F 1957 Compt. Rend. 244 3069
[79] Wang J F, Ponton C B, Harris I R 2001 J. Magn. Magn. Mater. 234 233
Google Scholar
[80] Lechevallier L, Le Breton J M, Wang J F, Harris I R 2004 J. Magn. Magn. Mater. 269 192
Google Scholar
[81] Wang J F, Ponton C B, Grössinger R, Harris I R 2004 J. Alloys Compd. 369 170
Google Scholar
[82] Sharma P, Verma A, Sidhu R K, Pandey O P 2003 J. Alloys Compd. 361 257
Google Scholar
[83] Grossinger R, Kupferling M, Tellez Blanco J C, Wiesinger G, Muller M, Hilscher G, Pieper M W, Wang J F, Harris I R 2003 IEEE T. Magn. 39 2911
Google Scholar
[84] Mocuta H, Lechevallier L, Le Breton J M, Wang J F, Harris I R 2004 J. Alloys Compd. 364 48
Google Scholar
[85] Wang J F, Ponton C B, Harris I R 2005 J. Alloys Compd. 403 104
Google Scholar
[86] Ounnunkad S 2006 Solid State Commun. 138 472
Google Scholar
[87] Litsardakis G, Manolakis I, Efthimiadis K 2007 J. Alloys Compd. 427 194
Google Scholar
[88] Lechevallier L, Le Breton J M, Morel A, Tenaud P 2008 J. Phys. Condens. Mat. 20 175203
Google Scholar
[89] Seifert D, Töpfer J, Stadelbauer M, Grössinger R, Le Breton J M 2011 J. Am. Ceram. Soc. 94 2109
Google Scholar
[90] Waki T, Inoue G, Tabata Y, Nakamura H 2020 IEEE T. Magn. 56 6702304
Google Scholar
[91] Lucchini E, Slokar G 1980 J. Magn. Magn. Mater. 21 93
Google Scholar
[92] Blanco A M, Gonzalez C 1991 J. Phys. D Appl. Phys. 24 612
Google Scholar
[93] Lechevallier L, Le Breton J M, Morel A, Tenaud P 2007 J. Magn. Magn. Mater. 316 e109
Google Scholar
[94] Chlan V, Kouřil K, Uličná K, Štěpánková H, Töpfer J, Seifert D 2015 Phys. Rev. B 92 125125
Google Scholar
[95] Sauer C, Köbler U, Zinn W, Stäblein H 1978 J. Phys. Chem. Solids 39 1197
Google Scholar
[96] Le Breton J M, Seifert D, Töpfer J, Lechevallier L 2015 Physica B 470 33
Google Scholar
[97] Lechevallier L, Le Breton J M, Teillet J, Morel A, Kools F, Tenaud P 2003 Physica B 327 135
Google Scholar
[98] Graetsch H, Leckebusch R, Sahl K, Haberey F, Rosenberg M S 1984 IEEE T. Magn. 20 495
Google Scholar
[99] Lee H B, Chun S H, Shin K W, Jeon B G, Chai Y S, Kim K H, Schefer J, Chang H, Yun S N, Joung T Y, Chung J H 2012 Phys. Rev. B 86 094435
Google Scholar
[100] Pieper M W, Morel A, Kools F 2002 J. Magn. Magn. Mater. 242-245 1408
Google Scholar
[101] Pieper M W, Kools F, Morel A 2002 Phys. Rev. B 65 184402
Google Scholar
[102] Morel A, Le Breton J M, Kreisel J, Wiesinger G, Kools F, Tenaud P 2002 J. Magn. Magn. Mater. 242-245 1405
Google Scholar
[103] Le Breton J M, Teillet J, Wiesinger G, Morel A, Kools F, Tenaud P 2002 IEEE T. Magn. 38 2952
Google Scholar
[104] Wiesinger G, Mller M, Grssinger R, Pieper M, Morel A, Kools F, Tenaud P, Le Breton J M, Kreisel J 2002 Phys. Status Solidi A 189 499
Google Scholar
[105] Lechevallier L, Le Breton J M, Wang J F, Harris I R 2004 J. Phys. Condens. Mat. 16 5359
Google Scholar
[106] Choi D H, Lee S W, Shim I B, Kim C S 2006 J. Magn. Magn. Mater. 304 e243
Google Scholar
[107] Kobayashi Y, Oda E, Nishiuchi T, Nakagawa T 2011 J. Ceram. Soc. Jpn. 119 285
Google Scholar
[108] Langhof N, Göbbels M 2009 J. Solid State Chem. 182 2725
Google Scholar
[109] Kouřil K 2013 Ph. D. Dissertation (Prague: Charles University
[110] Wu C J, Yu Z, Yang Y, Sun K, Guo R D, Jiang X N, Lan Z W 2015 J. Appl. Phys. 118 103907
Google Scholar
[111] Ohtsuka M, Muto S, Tatsumi K, Kobayashi Y, Kawata T 2016 Microscopy 65 127
Google Scholar
[112] Mahadevan S, Sathe V, Raghavendra Reddy V, Sharma P 2020 IEEE T. Magn. 56 1800106
Google Scholar
[113] Nagasawa N, Ikeda S, Shimoda A, Waki T, Tabata Y, Nakamura H, Kobayashi H 2016 Hyperfine Interact. 237 39
Google Scholar
[114] Oura M, Nagasawa N, Ikeda S, Shimoda A, Waki T, Tabata Y, Nakamura H, Hiraoka N, Kobayashi H 2018 J. Appl. Phys. 123 033907
Google Scholar
[115] Sakai H, Hattori T, Tokunaga Y, Kambe S, Ueda H, Tanioku Y, Michioka C, Yoshimura K, Takao K, Shimoda A, Waki T, Tabata Y, Nakamura H 2018 Phys. Rev. B 98 064403
Google Scholar
[116] Nakamura H, Waki T, Tabata Y, Mény C 2019 J. Phys. Mater. 2 015007
Google Scholar
[117] Nagasawa N, Oura M, Ikeda S, Waki T, Tabata Y, Nakamura H, Kobayashi H 2020 J. Appl. Phys. 128 133901
Google Scholar
[118] Balbashov A M, Egorov S K 1981 J. Cryst. Growth 52 498
Google Scholar
[119] Morishita H, Amano A, Ueda H, Michioka C, Yoshimura K 2014 J. Jpn. Soc. Powder Powder Metall. 61 S64
Google Scholar
[120] Gambino R J, Leonhard F 1961 J. Am. Ceram. Soc. 44 221
Google Scholar
[121] Shirk B T, Buessem W R 1969 J. Appl. Phys. 40 1294
Google Scholar
[122] Goto Y, Takahashi K 1972 J. Ceram. Soc. Jpn. 80 358
Google Scholar
[123] Obradors X, Solans X, Collomb A, Samaras D, Rodriguez J, Pernet M, Font-Altaba M 1988 J. Solid State Chem. 72 218
Google Scholar
[124] Vinnik D A, Tarasova A Y, Zherebtsov D A, Gudkova S A, Galimov D M, Zhivulin V E, Trofimov E A, Nemrava S, Perov N S, Isaenko L I, Niewa R 2017 Materials 10 578
Google Scholar
[125] Vinnik D A, Gudkova S A, Zherebtsov D A, Trofimov E A, Mashkovtseva L S, Trukhanov A V, Trukhanov S V, Nemrava S, Blaschkowski B, Niewa R 2019 J. Magn. Magn. Mater. 470 97
Google Scholar
[126] Vincent H, Sugg B, Lefez V, Bochu B, Boursier D, Chaudouet P 1991 J. Magn. Magn. Mater. 101 170
Google Scholar
[127] Takaoka H, Suito H 1994 J. Cryst. Growth 137 493
Google Scholar
[128] Eraky M R, Beslepkin A A, Kuntsevich S P 2003 Mater. Lett. 57 3427
Google Scholar
[129] Jalli J, Yang-Ki H, Sung-Hoon G, Seok B, Jaejin L, Sur J C, Abo G S, Lyle A, Sung-Ik L, Hwachol L, Mewes T 2008 IEEE T. Magn. 44 2978
Google Scholar
[130] Pavlova S G, Balbashov A M, Rybina L N 2012 J. Cryst. Growth 351 161
Google Scholar
[131] Vinnik D A, Zherebtsov D A, Mashkovtseva L S, Nemrava S, Semisalova A S, Galimov D M, Gudkova S A, Chumanov I V, Isaenko L I, Niewa R 2015 J. Alloys Compd. 628 480
Google Scholar
[132] Shlyk L, Vinnik D A, Zherebtsov D A, Hu Z, Kuo C Y, Chang C F, Lin H J, Yang L Y, Semisalova A S, Perov N S, Langer T, Pöttgen R, Nemrava S, Niewa R 2015 Solid State Sci. 50 23
Google Scholar
[133] Vinnik D A, Tarasova A Y, Zherebtsov D A, et al. 2015 Ceram. Int. 41 9172
Google Scholar
[134] Vinnik D A, Zherebtsov D A, Mashkovtseva L S, et al. 2015 Mater. Chem. Phys. 155 99
Google Scholar
[135] Vinnik D A, Semisalova A S, Mashkovtseva L S, Yakushechkina A K, Nemrava S, Gudkova S A, Zherebtsov D A, Perov N S, Isaenko L I, Niewa R 2015 Mater. Chem. Phys. 163 416
Google Scholar
[136] Gudkova S A, Vinnik D A, Zhivulin V E, et al. 2019 J. Magn. Magn. Mater. 470 101
Google Scholar
[137] Hassner M, Vinnik D A, Niewa R 2020 Materials 13 858
Google Scholar
[138] Vinnik D A, Prosvirin I P, Zhivulin V E, et al. 2020 J. Alloys Compd. 844 156036
Google Scholar
[139] Zhivulin V E, Trofimov E A, Zaitseva O V, Zherebtsov D A, Uchaev D A, Vinnik D A 2020 Crystals 10 264
Google Scholar
[140] Shimoda A, Takao K, Uji K, Waki T, Tabata Y, Nakamura H 2016 J. Solid State Chem. 239 153
Google Scholar
[141] Liu R S, Wang L C, Xu Z, Qin C, Li Z, Yu X, Liu D, Gong H, Zhao T Y, Sun J, Hu F, Shen B G 2022 Mater. Today Commun. 32 103996
Google Scholar
[142] Ueda H, Tanioku Y, Michioka C, Yoshimura K 2017 Phys. Rev. B 95 224421
Google Scholar
[143] Waki T, Okazaki S, Tabata Y, Kato M, Hirota K, Nakamura H 2018 Mater. Res. Bull. 104 87
Google Scholar
[144] Waki T, Uji K, Tabata Y, Nakamura H 2019 J Solid State Chem. 270 366
Google Scholar
[145] Waki T, Takao K, Tabata Y, Nakamura H 2020 J. Solid State Chem. 282 121071
Google Scholar
[146] Waki T, Hani K, Tabata Y, Nakamura H 2023 Mater. Trans. 64 564
Google Scholar
[147] Küpferling M, Novák P, Knížek K, Pieper M W, Grössinger R, Wiesinger G, Reissner M 2005 J. Appl. Phys. 97 10
Google Scholar
[148] Küpferling M, Grössinger R, Pieper M W, et al. 2006 Phys. Rev. B 73 144408
Google Scholar
[149] Komabuchi M, Urushihara D, Kimata Y, Okabe M, Asaka T, Fukuda K 2019 Phys. Rev. B 100 094406
Google Scholar
[150] Komabuchi M, Urushihara D, Kimata Y, Okabe M, Asaka T, Fukuda K, Nakano K, Yamamoto K 2020 J. Magn. Magn. Mater. 498 166115
Google Scholar
[151] Liu R S, Wang L C, Yu X, Xu Z, Gong H, Zhao T Y, Hu F, Shen B G 2023 Ceram. Int. 49 1888
Google Scholar
[152] Williams J M, Adetunji J, Gregori M 2000 J. Magn. Magn. Mater. 220 124
Google Scholar
[153] Kobayashi Y, Oda E, Nakagawa T, Nishiuchi T 2016 J. Jpn. Soc. Powder Powder Metall. 63 101
Google Scholar
[154] Kobayashi Y, Oda E, Kawata T, Nakagawa T 2017 Hitachi Metal Tech. Rev. 33 34 (in Japanese
[155] Nakamura H, Shimoda A, Waki T, Tabata Y, Meny C 2016 J. Phys. Condens Mat. 28 346002
Google Scholar
[156] Nishikubo T, Motizuki K 1962 J. Phys. Soc. Jpn. 17 871
Google Scholar
[157] Tsuda T, Okada K, Yasuoka H 1974 J. Phys. Soc. Jpn. 37 1713
Google Scholar
[158] Jung H, Lee S J, Song M, Lee S, Lee H J, Kim D H, Kang J S, Zhang C L, Cheong S W 2009 New J. Phys. 11 043008
Google Scholar
[159] Miyatani K, Kohn K, Kamimura H, Iida S 1966 J. Phys. Soc. Jpn. 21 464
Google Scholar
[160] Itoh M, Nawata Y, Kiyama T, Akahoshi D, Fujiwara N, Ueda Y 2003 Physica B 329 751
Google Scholar
[161] Ghoshray A, Bandyopadhyay B, Ghoshray K, Morchshakov V, Bärner K, Troyanchuk I O, Nakamura H, Kohara T, Liu G Y, Rao G H 2004 Phys. Rev. B 69 064424
Google Scholar
[162] Julien M H, de Vaulx C, Mayaffre H, et al. 2008 Phys. Rev. Let. 100 096405
Google Scholar
[163] Park J, Hong Y K, Lee W, Choi B C, Choi C J 2016 IEEE Magn. Lett. 7 5500403
Google Scholar
[164] Dixit V, Kim S G, Park J, Hong Y K 2017 AIP Adv. 7 115209
Google Scholar
[165] Hui Y J, Cheng W M, Lin G Q, Miao X S 2014 IEEE T. Magn. 50 2800904
Google Scholar
[166] Hou Y H, Chen X, Guo X L, Li W, Huang Y L, Tao X M 2021 J. Magn. Magn. Mater. 538 168257
Google Scholar
[167] Ravindran P, Delin A, James P, Johansson B, Wills J, Ahuja R, Eriksson O 1999 Phys. Rev. B 59 15680
Google Scholar
[168] Feng M, Shao B, Wu J, Zuo X 2013 J. Appl. Phys. 113 17D909
Google Scholar
[169] Ahn K, Ryu B, Korolev D, Jae Kang Y 2013 Appl. Phys. Lett. 103 242417
Google Scholar
[170] Halilov S, Perlov A Y, Oppeneer P, Yaresko A, Antonov V 1998 Phys. Rev. B 57 9557
Google Scholar
[171] Wang G Y, Yang K, Ma Y Z H, Liu L, Lu D, Zhou Y X, Wu H 2023 Chin. Phys. Lett. 40 077301
Google Scholar
[172] 蒋有为 2020 硕士学位论文 (成都: 电子科技大学)
Jiang Y W 2020 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China
[173] Inoue J, Onoda H, Yanagihara H 2020 J. Phys. D Appl. Phys. 53 195003
Google Scholar
[174] Inoue J, Nakamura H, Yanagihara H 2019 T. Magn. Soc. Jpn. (Special Issues) 3 12
Google Scholar
[175] Silva L M, da Silva R B, Silva R L, et al. 2022 Ceram. Int. 48 23224
Google Scholar
-
图 1 从1950年代至2023年关于铁氧体作为永磁材料的科学论文发表量的历史演变(来源: Scopus-以关键词“Ferrite permanent magnet”搜索获得的结果)
Fig. 1. Historical evolution of the number of scientific papers published on ferrite as a permanent magnet material from the 1950 s to 2023 (Source: Scopus- search results by keyword “Ferrite permanent magnet”).
图 5 (a) Sr1–xLaxCoxFe12–xO19在1200 ℃烧结温度下的磁性能[9]; (b)各向同性Sr铁氧体经La-Co添加后的磁性能变化(空心符号表示La-Co添加样品, 实心符号表示Cr2O3添加样品)[62]; (c)在–100—+140 ℃温度范围内, x = 0.0—0.2的La-Co替代Sr铁氧体的Br[α(Br)]和HcJ[β(HcJ)]的温度系数[62]
Fig. 5. (a) Magnetic properties of Sr1–xLaxCoxFe12–xO19 at a sintering temperature of 1200 ℃[9]; (b) variation of magnetic properties of isotropic Sr ferrite with La-Co addition (hollow symbols denote the La-Co added samples and solid symbols denote the Cr2O3 added samples)[62]; (c) in the temperature range of –100 ℃ to +140 ℃, the temperature coefficients of Br[α(Br)] and HcJ[β(HcJ)] for La-Co substituted Sr ferrites with x = 0.0–0.2[62].
图 8 对于Sr1–xLaxFe12–yCoyO19, WDX测定的Co浓度y与La浓度x的比值(虚线分别代表x = y和y/x = 0.75)[140], x > y样品中的La3+电荷补偿由Co2+和Fe2+完成
Fig. 8. Ratio of Co concentration y to La concentration x determined by WDX for Sr1–xLaxFe12–yCoyO19 (dashed lines represent x = y and y/x = 0.75, respectively) [140]. Charge compensation for La3+ in the sample x > y is accomplished by Co2+ and Fe2+.
图 9 Na2O助熔剂法制备的(a) La-SrM和(b) La-Co SrM单晶的难、易轴磁化曲线[140]; (c) (Na/Ca-)La-Co替代SrM系列样品在5 K下的磁各向异性场HA随Co替代浓度的变化[140,142–145](图中直线帮助判断HA增长趋势)
Fig. 9. Hard- and easy-axis magnetization curves of (a) La-SrM and (b) La-Co SrM single crystals prepared by the Na2O flux method[140]; (c) variation of the magnetic anisotropy field HA with the concentration of Co substitution for a series of samples of (Na/Ca-)La-Co substituted SrM at 5 K [140,142–145] (the straight line helps to determine the trend of the HA growth).
图 10 (a) SrFe12–xCoxO19在5 K下的磁各向异性场HA随Co浓度x的变化, 与文献[140]中La-Co SrM单晶(蓝色方块)的数据进行对比, 高亮区域表明, 在该Co浓度范围内, Co-SrM的HA高于La-Co SrM, 插图是Co-SrM和La-Co SrM晶格参数c/a比值; (b)所有样品HA的温度依赖性[151]
Fig. 10. (a) Variation of the magnetic anisotropy field HA of SrFe12–xCoxO19 as a function of Co concentration x at 5 K, compared with data for La-Co SrM single crystals (blue squares) from the literature[140]. The highlighted regions indicate that the HA of Co-SrM is higher than that of La-Co SrM in this Co concentration range. And the inset is the ratio of the lattice parameters c/a for Co-SrM and La-Co SrM. (b) Temperature dependence of HA for all samples[151].
图 12 La-Co SrM中Co的电荷和自旋态以及替代晶位的总结[115], 说明了S1的两种情况, Co2+的主要替代晶位发生在(a)八面体4f2晶位, (b)四面体4f1晶位
Fig. 12. Charge and spin states of Co in La-Co SrM and summary of alternative crystal sites[115]. Two cases of S1 are illustrated: The main alternative sites for Co2+ occur in (a) the octahedral 4f2, (b) the tetrahedral 4f1.
图 13 Co浓度(y)对S1信号恢复场(Hr)的依赖性. 作为参考, 5 K时各向异性场HA的Co浓度依赖性如红点所示. 插图为S2和S3的Hr[116]
Fig. 13. Dependence of Co concentration (y) on the recovery field (Hr) of S1signal. As a reference, the Co concentration dependence of the anisotropic field HA at 5 K is shown in red dots. The insets show the Hr of S2 and S3[116] .
表 1 国内外永磁铁氧体产品的最高性能
Table 1. Top performance of domestic and international ferrite magnets.
表 2 磁铅石型铁氧体AFe12O19中A和Fe晶位的相对磁矩方向
Table 2. Relative magnetic moment orientations of A and Fe sites in AFe12O19.
元素 Wyckoff晶位 氧配位数 晶位形状 磁矩方向 A 2d 12 — — Fe 2a 6 八面体 ↑ 2b 5 双锥体 ↑ 4f1 4 四面体 ↓ 4f2 6 八面体 ↓ 12k 6 八面体 ↑ 表 3 各国研究者用不同测量方法关于La-Co SrM中Co占据晶位的研究结论(●: 肯定或很可能; ▲: 可能, 但值得怀疑)
Table 3. Conclusions of researchers from various countries on the occupation of crystalline sites by Co in La-Co SrM using different measurements (●: certain or very likely; ▲: possible, but doubtful).
样品 作者和年份 国家 检测方法 Co2+占位 2a 2b 4f1 4f2 12k 多晶 Pieper等, 2002[100] 澳大利亚 57Fe-NMR ● ● Pieper等, 2002[101] 57Fe, 139La和 59Co-NMR ▲ ● Moral等, 2002[102] 法国 57Fe-Mössbauer, Raman ● ● Le Breton等, 2002[103] 57Fe-Mössbauer ● ▲ ● Wiesinger等, 2002[104] 澳大利亚 57Fe-Mössbauer, 57Fe和59Co-NMR ● ▲ ● Lechevallier等, 2003[97] 法国 57Fe-Mössbauer ● ● Lechevallier等, 2004[105] 57Fe-Mössbauer ● ● Choi等, 2006[106] 韩国 57Fe-Mössbauer ● ● ● Kobayashi等, 2011[107] 日本 Neutron Diffraction, EXAFS, XMCD ● ● ● Kouřil, 2013[109] 捷克 57Fe-NMR ● ▲ ● ▲ ▲ Wu等, 2015[110] 中国 Raman, XPS ● ● ● Ohtsuka等, 2016[111] 日本 TEM-EDXS ● ● ● Mahadevan等, 2020[112] 印度 57Fe-Mössbauer, Raman ● ● ● 单晶 Nagasawa等, 2016[113] 日本 57Fe-Mössbauer ▲ ▲ Oura等, 2018[114] 57Fe-Mössbauer, XES ● ● Sakai等, 2018[115] 57Fe和59Co-NMR ● ● ● Nakamura等, 2019[116] 59Co-NMR ● ● ● Nagasawa等, 2020[117] 外场作用下的57Fe-Mössbauer ● 表 4 (Na/Ca-)La-Co替代SrM系列样品在5 K下的磁各向异性场HA
Table 4. Magnetic anisotropy field HA at 5 K for (Na/Ca-)La-Co substituted SrM series samples.
样品 制备方法 替代浓度 5 K时的磁各向异性场 HA/kOe x y Sr1–xLaxFe12–yCoyO19[140] Na2O助熔剂法生长的单晶 0 0 17.50 0.055 0.032 17.22 0.139 0.077 19.46 0.242 0.108 18.62 0.289 0.152 21.57 0.367 0.212 24.36 0.511 0.161 22.17 0.472 0.266 25.57 Sr1–xLaxFe12–yCoyO19[142] 高氧压移动溶剂浮区法生长的单晶 0.2 0.2 21.77 0.4 0.4 27.96 Sr1–xLaxFe12–yCoyO19[143] 高氧压固相反应法合成的多晶 0.21 0.21 21.18 0.30 0.30 21.76 0.39 0.39 24.41 0.41 0.41 27.06 0.72 0.72 34.12 0.93 0.93 42.35 1.00 1.00 56.76 Ca13–n–xLaxFen–yCoyO19
(n = 11.87—11.93,
根据不同Co替代量
而改变)[144]CaO助熔剂法生长的单晶 0.52 0.07 15.26 0.52 0.10 17.35 0.56 0.17 23.15 0.48 0.16 25.65 0.59 0.27 28.31 0.37 0.17 26.89 0.56 0.36 31.54 NaaxLaxFen–yCoyO19 (a = 0.25—0.41,
n = 11.84—11.97, 根据不同Co
替代量而改变)[145]Na2O助熔剂法生长的单晶 0.82 0.12 25.72 0.79 0.21 25.61 0.83 0.31 29.61 表 5 通过中子衍射和Rietveld分析得到7个候选模型, 显示了Co的占据晶位[107]
Table 5. Seven candidate models obtained by neutron diffraction and Ritveld analysis showing Co occupied sites[107].
模型 2a 2b 4f1 4f2 12k 1 — — 1.00 — — 2 — — — — 1.00 3 0.35 — 0.65 — — 4 0.31 — — — 0.69 5 — — 0.88 0.12 — 6 — — 0.47 — 0.53 7 0.22 — 0.38 — 0.40 表 6 Co2+和Co3+的高、低自旋值, 其中给出了八面体、四面体和双锥体对称的低自旋值, 而其中具有$ {{\mathrm{e}}}_{{\mathrm{g}}}^{4}{{\mathrm{t}}}_{2{\mathrm{g}}}^{3} $构型的四面体Co2+只有S = 3/2的单自旋态
Table 6. High and low spin values of Co2+ and Co3+. The low spin values of octahedral, tetrahedral and bipyramidal symmetries are given, where the tetrahedron Co2+ with $ {{\mathrm{e}}}_{{\mathrm{g}}}^{4}{{\mathrm{t}}}_{2{\mathrm{g}}}^{3} $ configuration has only S = 3/2 single spin states.
类别 高自旋 低自旋 八面体 四面体 双锥体 Co2+(d7) 3/2 1/2 — 1/2 Co3+(d6) 2 0 1 1 -
[1] Went J, Rathenau G, Gorter E, Van Oosterhout G 1952 Phy. Rev. 86 424
Google Scholar
[2] Went J J, Rathenau G W, Gorter E W, Oosterhout G W V 1952 Philips Tech. Rev. 13 194
[3] Granados-Miralles C, Jenuš P 2021 J. Phys. D Appl. Phys. 54 303001
Google Scholar
[4] Coey J M D 2002 J. Magn. Magn. Mater. 248 441
Google Scholar
[5] Pullar R C 2012 Prog. Mater. Sci. 57 1191
Google Scholar
[6] Gutfleisch O, Willard M A, Bruck E, Chen C H, Sankar S G, Liu J P 2011 Adv. Mater. 23 821
Google Scholar
[7] de Julian Fernandez C, Sangregorio C, de la Figuera J, Belec B, Makovec D, Quesada A 2020 J. Phys. D Appl. Phys. 54 153001
Google Scholar
[8] Bollero A, Rial J, Villanueva M, Golasinski K M, Seoane A, Almunia J, Altimira R 2017 ACS Sustain. Chem. Eng. 5 3243
Google Scholar
[9] Iida K, Minachi Y, Masuzawa K, Kawakami M, Nishio H, Taguchi H 1999 J. Magn. Soc. Jpn. 23 1093
Google Scholar
[10] Coey J M 2014 J. Phys. Condens. Matter 26 064211
Google Scholar
[11] Cochardt A 1966 J. Appl. Phys. 37 1112
Google Scholar
[12] Taguchi H 1998 KONA Powder Part. J. 16 116
Google Scholar
[13] Goldman A 2006 Modern Ferrite Technology (New York: Springer Science & Business Media
[14] Went J 1952 Philips Tech. Rev. 13 361
[15] Stuijts A, Rathenau G, Weber G 1954 Philips Tech. Rev. 16 209
[16] Deshpande U S 2003 IEEE International Electric Machines and Drives Conference IEMDC'03 Madison, WI, USA, June 1-4, 2003 p509
[17] Chen C H, Yi P 2014 Proceedings of 2014 International Conference on NdFeB Magnets: Supply Chain, Critical Properties, & Applications Ningbo, China, March 2−5, 2014 p126
[18] Tech-Mag T https://www.tdk.com/en/tech-mag/ferrite02/012#section3 [2021-12-3]
[19] Coey J M D 2020 Engineering 6 119
Google Scholar
[20] Bollero A, Palmero E M 2022 Modern Permanent Magnets Chapter 3-Recent Advances in Hard-Ferrite Magnets ( Woodhead Publishing
[21] TDK https://product.tdk.com/en/system/files?file=dam/doc/product/magnet/magnet/ferrite/datasheets/magnet_fb_summary_en.pdf [2021-12-3]
[22] Hitachi Metals L http://www.hitachi-metals.co.jp/e/products/auto/el/p03_01_g.html [2021-12-3]
[23] TDK Ferrite Magnets Catalog https://product.tdk.com/en/products/magnet/magnet/ferrite/index.html [2021-12-3]
[24] 翁兴园 2021 新材料产业 4 32
Google Scholar
Weng X Y 2021 Adv. Mater. Indus. 4 32
Google Scholar
[25] 华经产业研究 https://baijiahao.baidu.com/s?id=1749074365467103880&wfr=spider&for=pc [2023-2-13]
[26] 陈羽峰, 徐斌 2022 磁性材料及器件 54 108
Google Scholar
Chen Y F, Xu B 2022 J. Mag. Mater. Dev. 54 108
Google Scholar
[27] 横店东磁磁性产品 http://www.chinadmegc.com/product/1.html [2024-1-28]
[28] 北矿磁材科技有限公司-烧结永磁铁氧体磁粉(BGRIMM Magnetic Materials & Technology Co. , Ltd) http://www.magmat.com/cpysc/yctytcf/index.htm [2022-11-15]
[29] 江益磁材湿式异方性铁氧体永磁产品结构http://www.jpmf.com.cn/displayproduct.html?id=3806471777899840 [2022-11-15]
[30] 安徽龙磁科技股份有限公司永磁铁氧体磁性能牌号表https://www.sinomagtech.com/cpzx/yctyt/ [2024-1-28]
[31] Hitachi catalogue http://www.hitachi-metals.co.jp/e/products/auto/el/p03_05.html [2022-11-15]
[32] 翁兴园 2013 新材料产业 4 31
Google Scholar
Weng X Y 2013 Adv. Mater. Indus. 4 31
Google Scholar
[33] Smit B J, Wijn H P 1959 Ferrites, Philips Technical Library (The Netherlands: Eindhoven
[34] Aminoff G 1925 Geologiska Fö reningen i Stockholm Fö rhandlingar 47 283
Google Scholar
[35] Adelsköld V 1938 Arkiv. Kemi. Min. Geol. 12a 1
[36] Harris V G, Geiler A, Chen Y, Yoon S D, Wu M, Yang A, Chen Z, He P, Parimi P V, Zuo X, Patton C E, Abe M, Acher O, Vittoria C 2009 J. Magn. Magn. Mater. 321 2035
Google Scholar
[37] Kojima H 1982 Handb. Ferromagn. Mater. 3 305
Google Scholar
[38] Kreisel J, Vincent H, Tasset F, Paté M, Ganne J P 2001 J. Magn. Magn. Mater. 224 17
Google Scholar
[39] Townes W, Fang J, Perrotta A 1967 Z. Krist. -Cryst. Mater. 125 437
Google Scholar
[40] Braun P B 1957 Philips Res. Rep. 12 491
[41] Bilovol V, Martínez-García R 2015 J. Phy. Chem. Solids 86 131
Google Scholar
[42] Harris V G 2012 IEEE T. Magn. 48 1075
Google Scholar
[43] Cullity B D, Graham C D 2011 Introduction to Magnetic Materials (Hoboken: John Wiley & Sons
[44] Jahn L, Müller H G 1969 Phys. Status Solidi B 35 723
Google Scholar
[45] Coey J M 2010 Magnetism and Magnetic Materials (Cambridge: Cambridge University Press
[46] Stäblein H 1982 Handb. Ferromagn. Mater. 3 441
Google Scholar
[47] Cui J, Kramer M, Zhou L, Liu F, Gabay A, Hadjipanayis G, Balasubramanian B, Sellmyer D 2018 Acta Mater. 158 118
Google Scholar
[48] Selvaraj S, Gandhi U, Berchmans L J, Mangalanathan U 2021 Mater. Tech. 36 36
Google Scholar
[49] Waki T 2022 J. Jpn. Soc. Powder Powder Metall. 69 149 (in Japanese
Google Scholar
[50] Mahmood S H, Abu-Aljarayesh I 2016 Hexaferrite Permanent Magnetic Materials (Materials Research Forum LLC
[51] Lisjak D, Mertelj A 2018 Prog. Mater. Sci. 95 286
Google Scholar
[52] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰 2024 物理学报 73 066104
Google Scholar
Ren Y Y, Li Y N, Liu H S, Xu N, Guo K, Xu Z H, Chen X, Gao J F 2024 Acta Phys. Sin. 73 066104
Google Scholar
[53] Rhein F, Helbig T, Neu V, Krispin M, Gutfleisch O 2018 Acta Mater. 146 85
Google Scholar
[54] Trukhanov A V, Kostishyn V G, Panina L V, Jabarov S H, Korovushkin V V, Trukhanov S V, Trukhanova E L 2017 Ceram. Int. 43 12822
Google Scholar
[55] Trukhanov S V, Trukhanov A V, Turchenko V A, Kostishyn V G, Panina L V, Kazakevich I S, Balagurov A M 2016 J. Alloy Compd. 689 383
Google Scholar
[56] Li J, Hong Y, He S, Li W K, Bai H, Xia Y H, Sun G A, Zhou Z X 2022 J. Adv. Ceram. 11 263
Google Scholar
[57] Nguyen H H, Jeong W H, Phan T L, Lee B W, Yang D S, Tran N, Dang N T 2021 J. Magn. Magn. Mater. 537 168195
Google Scholar
[58] Albanese G, Deriu A 1979 Ceram. Int. 5 3
Google Scholar
[59] Dionne G F 2009 Magnetic Oxides (New York: Springer
[60] Summergrad R N, Banks E 1957 J. Phys. Chem. Solids 2 312
Google Scholar
[61] Le Roux D, Vincent H, Joubert J C, Vallet-Regi M 1988 Mater. Res. Bull. 23 299
Google Scholar
[62] Ogata Y, Kubota Y, Takami T, Tokunaga M, Shinokara T 1999 IEEE T. Magn. 35 3334
Google Scholar
[63] Tenaud P, Morel A, Kools F, Le Breton J M, Lechevallier L 2004 J. Alloy Compd. 370 331
Google Scholar
[64] Kools F, Morel A, Grössinger R, Le Breton J M, Tenaud P 2002 J. Magn. Magn. Mater. 242-245 1270
Google Scholar
[65] Nishio H, Minachi Y, Yamamoto H 2009 IEEE T. Magn. 45 5281
Google Scholar
[66] Kikuchi T, Nakamura T, Yamasaki T, Nakanishi M, Fujii T, Takada J, Ikeda Y 2010 J. Magn. Magn. Mater. 322 2381
Google Scholar
[67] Nishio H, Yamamoto H 2011 IEEE T. Magn. 47 3641
Google Scholar
[68] Kobayashi Y, Hosokawa S, Oda E, Toyota S 2008 J. Jpn. Soc. Powder Powder Metall. 55 541
Google Scholar
[69] Du Y B, Liu Y, Lian L X, Du J 2019 J. Magn. Magn. Mater. 469 189
Google Scholar
[70] Chen Z, Wang F, Yan S, Nie Y, Feng Z, Chen Y, Harris V G, Zhang S 2014 J. Am. Ceram. Soc. 97 1873
Google Scholar
[71] Chen Z, Wang F, Yan S, Feng Z 2014 Mat. Sci. Eng. B 182 69
Google Scholar
[72] Zhu D, Geng Z, Liu R S, Zhou X, Jia L, Hu G, Wang Q, Li B 2020 Rare Metals 39 89
Google Scholar
[73] Li X, Yang W G, Bao D X, Meng X D, Lou B Y 2013 J. Magn. Magn. Mater. 329 1
Google Scholar
[74] Huang X, Liu X S, Yang Y J, Huang K, Niu X F, Jin D L, Gao S, Ma Y Q, Huang F, Lv F R, Feng S J 2015 J. Magn. Magn. Mater. 378 424
Google Scholar
[75] Yang Y J, Wang F H, Shao J X, Huang D H, Liu X X, Feng S J, Wen C E 2015 J. Magn. Magn. Mater. 384 64
Google Scholar
[76] Kang Y M, Moon K S 2015 Ceram. Int. 41 12828
Google Scholar
[77] Lotgering F K 1974 J. Phys. Chem. Solids 35 1633
Google Scholar
[78] Deschamps A, Bertaut F 1957 Compt. Rend. 244 3069
[79] Wang J F, Ponton C B, Harris I R 2001 J. Magn. Magn. Mater. 234 233
Google Scholar
[80] Lechevallier L, Le Breton J M, Wang J F, Harris I R 2004 J. Magn. Magn. Mater. 269 192
Google Scholar
[81] Wang J F, Ponton C B, Grössinger R, Harris I R 2004 J. Alloys Compd. 369 170
Google Scholar
[82] Sharma P, Verma A, Sidhu R K, Pandey O P 2003 J. Alloys Compd. 361 257
Google Scholar
[83] Grossinger R, Kupferling M, Tellez Blanco J C, Wiesinger G, Muller M, Hilscher G, Pieper M W, Wang J F, Harris I R 2003 IEEE T. Magn. 39 2911
Google Scholar
[84] Mocuta H, Lechevallier L, Le Breton J M, Wang J F, Harris I R 2004 J. Alloys Compd. 364 48
Google Scholar
[85] Wang J F, Ponton C B, Harris I R 2005 J. Alloys Compd. 403 104
Google Scholar
[86] Ounnunkad S 2006 Solid State Commun. 138 472
Google Scholar
[87] Litsardakis G, Manolakis I, Efthimiadis K 2007 J. Alloys Compd. 427 194
Google Scholar
[88] Lechevallier L, Le Breton J M, Morel A, Tenaud P 2008 J. Phys. Condens. Mat. 20 175203
Google Scholar
[89] Seifert D, Töpfer J, Stadelbauer M, Grössinger R, Le Breton J M 2011 J. Am. Ceram. Soc. 94 2109
Google Scholar
[90] Waki T, Inoue G, Tabata Y, Nakamura H 2020 IEEE T. Magn. 56 6702304
Google Scholar
[91] Lucchini E, Slokar G 1980 J. Magn. Magn. Mater. 21 93
Google Scholar
[92] Blanco A M, Gonzalez C 1991 J. Phys. D Appl. Phys. 24 612
Google Scholar
[93] Lechevallier L, Le Breton J M, Morel A, Tenaud P 2007 J. Magn. Magn. Mater. 316 e109
Google Scholar
[94] Chlan V, Kouřil K, Uličná K, Štěpánková H, Töpfer J, Seifert D 2015 Phys. Rev. B 92 125125
Google Scholar
[95] Sauer C, Köbler U, Zinn W, Stäblein H 1978 J. Phys. Chem. Solids 39 1197
Google Scholar
[96] Le Breton J M, Seifert D, Töpfer J, Lechevallier L 2015 Physica B 470 33
Google Scholar
[97] Lechevallier L, Le Breton J M, Teillet J, Morel A, Kools F, Tenaud P 2003 Physica B 327 135
Google Scholar
[98] Graetsch H, Leckebusch R, Sahl K, Haberey F, Rosenberg M S 1984 IEEE T. Magn. 20 495
Google Scholar
[99] Lee H B, Chun S H, Shin K W, Jeon B G, Chai Y S, Kim K H, Schefer J, Chang H, Yun S N, Joung T Y, Chung J H 2012 Phys. Rev. B 86 094435
Google Scholar
[100] Pieper M W, Morel A, Kools F 2002 J. Magn. Magn. Mater. 242-245 1408
Google Scholar
[101] Pieper M W, Kools F, Morel A 2002 Phys. Rev. B 65 184402
Google Scholar
[102] Morel A, Le Breton J M, Kreisel J, Wiesinger G, Kools F, Tenaud P 2002 J. Magn. Magn. Mater. 242-245 1405
Google Scholar
[103] Le Breton J M, Teillet J, Wiesinger G, Morel A, Kools F, Tenaud P 2002 IEEE T. Magn. 38 2952
Google Scholar
[104] Wiesinger G, Mller M, Grssinger R, Pieper M, Morel A, Kools F, Tenaud P, Le Breton J M, Kreisel J 2002 Phys. Status Solidi A 189 499
Google Scholar
[105] Lechevallier L, Le Breton J M, Wang J F, Harris I R 2004 J. Phys. Condens. Mat. 16 5359
Google Scholar
[106] Choi D H, Lee S W, Shim I B, Kim C S 2006 J. Magn. Magn. Mater. 304 e243
Google Scholar
[107] Kobayashi Y, Oda E, Nishiuchi T, Nakagawa T 2011 J. Ceram. Soc. Jpn. 119 285
Google Scholar
[108] Langhof N, Göbbels M 2009 J. Solid State Chem. 182 2725
Google Scholar
[109] Kouřil K 2013 Ph. D. Dissertation (Prague: Charles University
[110] Wu C J, Yu Z, Yang Y, Sun K, Guo R D, Jiang X N, Lan Z W 2015 J. Appl. Phys. 118 103907
Google Scholar
[111] Ohtsuka M, Muto S, Tatsumi K, Kobayashi Y, Kawata T 2016 Microscopy 65 127
Google Scholar
[112] Mahadevan S, Sathe V, Raghavendra Reddy V, Sharma P 2020 IEEE T. Magn. 56 1800106
Google Scholar
[113] Nagasawa N, Ikeda S, Shimoda A, Waki T, Tabata Y, Nakamura H, Kobayashi H 2016 Hyperfine Interact. 237 39
Google Scholar
[114] Oura M, Nagasawa N, Ikeda S, Shimoda A, Waki T, Tabata Y, Nakamura H, Hiraoka N, Kobayashi H 2018 J. Appl. Phys. 123 033907
Google Scholar
[115] Sakai H, Hattori T, Tokunaga Y, Kambe S, Ueda H, Tanioku Y, Michioka C, Yoshimura K, Takao K, Shimoda A, Waki T, Tabata Y, Nakamura H 2018 Phys. Rev. B 98 064403
Google Scholar
[116] Nakamura H, Waki T, Tabata Y, Mény C 2019 J. Phys. Mater. 2 015007
Google Scholar
[117] Nagasawa N, Oura M, Ikeda S, Waki T, Tabata Y, Nakamura H, Kobayashi H 2020 J. Appl. Phys. 128 133901
Google Scholar
[118] Balbashov A M, Egorov S K 1981 J. Cryst. Growth 52 498
Google Scholar
[119] Morishita H, Amano A, Ueda H, Michioka C, Yoshimura K 2014 J. Jpn. Soc. Powder Powder Metall. 61 S64
Google Scholar
[120] Gambino R J, Leonhard F 1961 J. Am. Ceram. Soc. 44 221
Google Scholar
[121] Shirk B T, Buessem W R 1969 J. Appl. Phys. 40 1294
Google Scholar
[122] Goto Y, Takahashi K 1972 J. Ceram. Soc. Jpn. 80 358
Google Scholar
[123] Obradors X, Solans X, Collomb A, Samaras D, Rodriguez J, Pernet M, Font-Altaba M 1988 J. Solid State Chem. 72 218
Google Scholar
[124] Vinnik D A, Tarasova A Y, Zherebtsov D A, Gudkova S A, Galimov D M, Zhivulin V E, Trofimov E A, Nemrava S, Perov N S, Isaenko L I, Niewa R 2017 Materials 10 578
Google Scholar
[125] Vinnik D A, Gudkova S A, Zherebtsov D A, Trofimov E A, Mashkovtseva L S, Trukhanov A V, Trukhanov S V, Nemrava S, Blaschkowski B, Niewa R 2019 J. Magn. Magn. Mater. 470 97
Google Scholar
[126] Vincent H, Sugg B, Lefez V, Bochu B, Boursier D, Chaudouet P 1991 J. Magn. Magn. Mater. 101 170
Google Scholar
[127] Takaoka H, Suito H 1994 J. Cryst. Growth 137 493
Google Scholar
[128] Eraky M R, Beslepkin A A, Kuntsevich S P 2003 Mater. Lett. 57 3427
Google Scholar
[129] Jalli J, Yang-Ki H, Sung-Hoon G, Seok B, Jaejin L, Sur J C, Abo G S, Lyle A, Sung-Ik L, Hwachol L, Mewes T 2008 IEEE T. Magn. 44 2978
Google Scholar
[130] Pavlova S G, Balbashov A M, Rybina L N 2012 J. Cryst. Growth 351 161
Google Scholar
[131] Vinnik D A, Zherebtsov D A, Mashkovtseva L S, Nemrava S, Semisalova A S, Galimov D M, Gudkova S A, Chumanov I V, Isaenko L I, Niewa R 2015 J. Alloys Compd. 628 480
Google Scholar
[132] Shlyk L, Vinnik D A, Zherebtsov D A, Hu Z, Kuo C Y, Chang C F, Lin H J, Yang L Y, Semisalova A S, Perov N S, Langer T, Pöttgen R, Nemrava S, Niewa R 2015 Solid State Sci. 50 23
Google Scholar
[133] Vinnik D A, Tarasova A Y, Zherebtsov D A, et al. 2015 Ceram. Int. 41 9172
Google Scholar
[134] Vinnik D A, Zherebtsov D A, Mashkovtseva L S, et al. 2015 Mater. Chem. Phys. 155 99
Google Scholar
[135] Vinnik D A, Semisalova A S, Mashkovtseva L S, Yakushechkina A K, Nemrava S, Gudkova S A, Zherebtsov D A, Perov N S, Isaenko L I, Niewa R 2015 Mater. Chem. Phys. 163 416
Google Scholar
[136] Gudkova S A, Vinnik D A, Zhivulin V E, et al. 2019 J. Magn. Magn. Mater. 470 101
Google Scholar
[137] Hassner M, Vinnik D A, Niewa R 2020 Materials 13 858
Google Scholar
[138] Vinnik D A, Prosvirin I P, Zhivulin V E, et al. 2020 J. Alloys Compd. 844 156036
Google Scholar
[139] Zhivulin V E, Trofimov E A, Zaitseva O V, Zherebtsov D A, Uchaev D A, Vinnik D A 2020 Crystals 10 264
Google Scholar
[140] Shimoda A, Takao K, Uji K, Waki T, Tabata Y, Nakamura H 2016 J. Solid State Chem. 239 153
Google Scholar
[141] Liu R S, Wang L C, Xu Z, Qin C, Li Z, Yu X, Liu D, Gong H, Zhao T Y, Sun J, Hu F, Shen B G 2022 Mater. Today Commun. 32 103996
Google Scholar
[142] Ueda H, Tanioku Y, Michioka C, Yoshimura K 2017 Phys. Rev. B 95 224421
Google Scholar
[143] Waki T, Okazaki S, Tabata Y, Kato M, Hirota K, Nakamura H 2018 Mater. Res. Bull. 104 87
Google Scholar
[144] Waki T, Uji K, Tabata Y, Nakamura H 2019 J Solid State Chem. 270 366
Google Scholar
[145] Waki T, Takao K, Tabata Y, Nakamura H 2020 J. Solid State Chem. 282 121071
Google Scholar
[146] Waki T, Hani K, Tabata Y, Nakamura H 2023 Mater. Trans. 64 564
Google Scholar
[147] Küpferling M, Novák P, Knížek K, Pieper M W, Grössinger R, Wiesinger G, Reissner M 2005 J. Appl. Phys. 97 10
Google Scholar
[148] Küpferling M, Grössinger R, Pieper M W, et al. 2006 Phys. Rev. B 73 144408
Google Scholar
[149] Komabuchi M, Urushihara D, Kimata Y, Okabe M, Asaka T, Fukuda K 2019 Phys. Rev. B 100 094406
Google Scholar
[150] Komabuchi M, Urushihara D, Kimata Y, Okabe M, Asaka T, Fukuda K, Nakano K, Yamamoto K 2020 J. Magn. Magn. Mater. 498 166115
Google Scholar
[151] Liu R S, Wang L C, Yu X, Xu Z, Gong H, Zhao T Y, Hu F, Shen B G 2023 Ceram. Int. 49 1888
Google Scholar
[152] Williams J M, Adetunji J, Gregori M 2000 J. Magn. Magn. Mater. 220 124
Google Scholar
[153] Kobayashi Y, Oda E, Nakagawa T, Nishiuchi T 2016 J. Jpn. Soc. Powder Powder Metall. 63 101
Google Scholar
[154] Kobayashi Y, Oda E, Kawata T, Nakagawa T 2017 Hitachi Metal Tech. Rev. 33 34 (in Japanese
[155] Nakamura H, Shimoda A, Waki T, Tabata Y, Meny C 2016 J. Phys. Condens Mat. 28 346002
Google Scholar
[156] Nishikubo T, Motizuki K 1962 J. Phys. Soc. Jpn. 17 871
Google Scholar
[157] Tsuda T, Okada K, Yasuoka H 1974 J. Phys. Soc. Jpn. 37 1713
Google Scholar
[158] Jung H, Lee S J, Song M, Lee S, Lee H J, Kim D H, Kang J S, Zhang C L, Cheong S W 2009 New J. Phys. 11 043008
Google Scholar
[159] Miyatani K, Kohn K, Kamimura H, Iida S 1966 J. Phys. Soc. Jpn. 21 464
Google Scholar
[160] Itoh M, Nawata Y, Kiyama T, Akahoshi D, Fujiwara N, Ueda Y 2003 Physica B 329 751
Google Scholar
[161] Ghoshray A, Bandyopadhyay B, Ghoshray K, Morchshakov V, Bärner K, Troyanchuk I O, Nakamura H, Kohara T, Liu G Y, Rao G H 2004 Phys. Rev. B 69 064424
Google Scholar
[162] Julien M H, de Vaulx C, Mayaffre H, et al. 2008 Phys. Rev. Let. 100 096405
Google Scholar
[163] Park J, Hong Y K, Lee W, Choi B C, Choi C J 2016 IEEE Magn. Lett. 7 5500403
Google Scholar
[164] Dixit V, Kim S G, Park J, Hong Y K 2017 AIP Adv. 7 115209
Google Scholar
[165] Hui Y J, Cheng W M, Lin G Q, Miao X S 2014 IEEE T. Magn. 50 2800904
Google Scholar
[166] Hou Y H, Chen X, Guo X L, Li W, Huang Y L, Tao X M 2021 J. Magn. Magn. Mater. 538 168257
Google Scholar
[167] Ravindran P, Delin A, James P, Johansson B, Wills J, Ahuja R, Eriksson O 1999 Phys. Rev. B 59 15680
Google Scholar
[168] Feng M, Shao B, Wu J, Zuo X 2013 J. Appl. Phys. 113 17D909
Google Scholar
[169] Ahn K, Ryu B, Korolev D, Jae Kang Y 2013 Appl. Phys. Lett. 103 242417
Google Scholar
[170] Halilov S, Perlov A Y, Oppeneer P, Yaresko A, Antonov V 1998 Phys. Rev. B 57 9557
Google Scholar
[171] Wang G Y, Yang K, Ma Y Z H, Liu L, Lu D, Zhou Y X, Wu H 2023 Chin. Phys. Lett. 40 077301
Google Scholar
[172] 蒋有为 2020 硕士学位论文 (成都: 电子科技大学)
Jiang Y W 2020 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China
[173] Inoue J, Onoda H, Yanagihara H 2020 J. Phys. D Appl. Phys. 53 195003
Google Scholar
[174] Inoue J, Nakamura H, Yanagihara H 2019 T. Magn. Soc. Jpn. (Special Issues) 3 12
Google Scholar
[175] Silva L M, da Silva R B, Silva R L, et al. 2022 Ceram. Int. 48 23224
Google Scholar
计量
- 文章访问数: 3156
- PDF下载量: 152
- 被引次数: 0