搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池数值模拟

肖友鹏 王怀平 李刚龙

引用本文:
Citation:

Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池数值模拟

肖友鹏, 王怀平, 李刚龙

Numerical simulation of graphene/Ag2ZnSnSe4 induced p-n junction solar cell

Xiao You-Peng, Wang Huai-Ping, Li Gang-Long
PDF
HTML
导出引用
  • 银锌锡硒 (Ag2ZnSnSe4)是一种禁带宽度为1.4 eV的 n型半导体材料. 本文提出一种由n型Ag2ZnSnSe4与石墨烯 (Graphene) 组成的Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池, 并借助wxAMPS软件对电池的物理机理和性能影响因素进行模拟研究. 模拟结果表明, 高功函数的石墨烯与n型Ag2ZnSnSe4半导体接触时, Ag2ZnSnSe4吸收层的前端能带向上弯曲, 在n型Ag2ZnSnSe4吸收层表面诱导形成p型Ag2ZnSnSe4反型层, p型Ag2ZnSnSe4和n型Ag2ZnSnSe4组成p-n同质结. 模拟发现石墨烯和背接触的功函数会影响载流子的分离、输运和收集, 严重影响器件性能, 石墨烯功函数达到5.5 eV, 背接触功函数不高于4.4 eV, 都有利于提高器件性能. Ag2ZnSnSe4吸收层的掺杂浓度主要影响器件的短路电流, 而Ag2ZnSnSe4吸收层的体内缺陷对器件整体性能产生影响. 在石墨烯和背接触功函数分别为5.5和3.8 eV, Ag2ZnSnSe4吸收层的掺杂浓度和缺陷密度分别为1016和1014 cm–3时, Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池能够取得高达23.42%的效率. 这些模拟结果为设计新型高效低成本太阳电池提供了思路和物理阐释.
    Ag2ZnSnSe4 is an n-type semiconductor with a suitable bandgap of 1.4 eV. In the present study, a graphene/Ag2ZnSnSe4 induced p-n junction thin film solar cell is proposed and the physical mechanism and performance influencing factors of the solar cell are simulated and analyzed by using the wxAMPS software. The simulation results show that when a high work function graphene contacts an n-type Ag2ZnSnSe4 semiconductor, the energy band of the Ag2ZnSnSe4 absorber layer bends upward, meanwhile a p-type Ag2ZnSnSe4 inversion layer is induced on the surface of n-type Ag2ZnSnSe4, therefore the p-type Ag2ZnSnSe4 and n-type Ag2ZnSnSe4 form an induced p-n homojunction. It is found that the work function of graphene and back contact significantly influence the photogenerated carrier separation, transportation and collection. The graphene work function should be 5.5 eV and the work function of back contact should not be greater than 4.4 eV, which is beneficial to the improving of the device performance. The doping concentration of Ag2ZnSnSe4 absorber mainly affects the short-circuit current of the device, however, the defect density of Ag2ZnSnSe4 absorber affects the whole device performance. When the work function of graphene and back contact are 5.5 eV and 3.8 eV, the doping concentration and defect density of Ag2ZnSnSe4 absorber are 1016 cm–3 and 1014 cm–33, respectively, the conversion efficiency of the graphene/Ag2ZnSnSe4 induced p-n junction thin film solar cell can reach 23.42%. These simulation results provide the idea and physical explanation for designing a novel type of solar cell with high efficiency and low cost.
      通信作者: 肖友鹏, xiaoypnc@ecut.edu.cn
    • 基金项目: 东华理工大学博士科研启动基金(批准号: DHBK2019170)资助的课题
      Corresponding author: Xiao You-Peng, xiaoypnc@ecut.edu.cn
    • Funds: Scientific Research Staring Foundation for Doctors of East China University of Technology, China (Grant No. DHBK2019170).
    [1]

    Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W C, Goodrich A, Noufi R 2012 Sol. Energy Mater. Sol.Cells 101 154Google Scholar

    [2]

    Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A 2014 Appl. Phys. Lett. 104 051105Google Scholar

    [3]

    Zeng X, Tai K F, Zhang T, Ho C W J, Chen X, Huan A, Sum T C, Wong L H 2014 Sol. Energy Mater. Sol. Cells 124 55Google Scholar

    [4]

    Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902Google Scholar

    [5]

    Gokmen T, Gunawan O, Todorov T K, Mitzi D B 2013 Appl. Phys. Lett. 103 103506Google Scholar

    [6]

    Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar

    [7]

    Yeh L Y, Cheng K W 2014 Thin Solid Films 558 289Google Scholar

    [8]

    Patil R M, Nagapure D R, Chandra G H, Subbaiah Y P V, Gupta M, Rao R P 2020 Phys. Status Solidi 217 1900752Google Scholar

    [9]

    Yuan Z K, Chen S, Xiang H, Gong X G, Walsh A, Park J S, Repins I, Wei S H 2015 Adv. Funct. Mater. 25 6733Google Scholar

    [10]

    Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R, Gershon T S 2016 J. Chem. Phys. 144 104704Google Scholar

    [11]

    Gershon T, Sardashti K, Gunawan O, Mankad R, Singh S, Lee Y S, Ott J A, Kummel A, Haight R 2016 Adv. Energy Mater. 6 1601182Google Scholar

    [12]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar

    [13]

    曹宇, 祝新运, 陈瀚博, 王长刚, 张鑫童, 候秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [14]

    梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 物理学报 69 057901Google Scholar

    Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901Google Scholar

    [15]

    张翱, 张春秀, 陈云林, 张春梅, 孟涛 2020 物理学报 69 118801Google Scholar

    Zhang A, Zhang C X, Chen Y L, Zhang C M, Meng T 2020 Acta Phys. Sin. 69 118801Google Scholar

    [16]

    Gershon T, Sardashti K, Lee Y S, Gunawan O, Singh S, Bishop D, Kummel A C, Haight R 2017 Acta Mater. 126 383Google Scholar

    [17]

    Gershon T, Gunawan O, Gokmen T, Brew K W, Singh S, Hopstaken M, Poindester J R, Barnard E S, Buonassisi T, Haight R 2017 J. Appl. Phys. 121 174501Google Scholar

    [18]

    Jia J, Li Y, Yao B, Ding Z, Deng R, Jiang Y, Sui Y 2017 J. Appl. Phys. 121 215305Google Scholar

    [19]

    Jiang Y, Yao B, Jia J, Ding Z, Deng R, Liu D, Sui Y, Wang H, Li Y 2019 J. Appl. Phys. 125 025703Google Scholar

    [20]

    Hibino H, Kageshima H, Kotsugi M, Maeda F, Guo F Z, Watanabe Y 2009 Phys. Rev. B 79 125437Google Scholar

    [21]

    Garg R, Dutta N K, Choudhury N R 2014 Nanomaterials 4 267Google Scholar

    [22]

    Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J, Park J Y 2013 Appl. Phys. Lett. 103 171604Google Scholar

    [23]

    Seo J, Bong J, Cha J, Lim T, Son J, Park S H, Hwang J, Hong S, Ju S 2014 J. Appl. Phys. 116 084312Google Scholar

    [24]

    Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34Google Scholar

    [25]

    Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260Google Scholar

    [26]

    Dréon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C, Boccard M 2020 Nano Energy 70 104495Google Scholar

  • 图 1  模拟器件结构

    Fig. 1.  Structure of the graphene/AZTSe induced p-n junction solar cell used in the numerical simulation.

    图 2  不同石墨烯功函数情况下电池的 (a)电流密度-电压特性曲线, (b)能带结构, (c)电场分布, (d)载流子浓度, (e)载流子复合率分布, (f)量子效率

    Fig. 2.  Graphene/AZTSe induced p-n junction thin film solar cell with different values of graphene work function (a) current density-voltage curves, (b) energy band structure, (c) electric field, (d) carrier concentration, (e) carrier recombination rate profile, (f) quantum efficiency.

    图 3  不同背接触功函数时电池的 (a)电流密度-电压特性曲线, (b)能带结构, (c)电子浓度, (d)载流子复合率分布

    Fig. 3.  Graphene/AZTSe induced p-n junction thin film solar cell with different values of back contact work function (a) current density-voltage curves, (b) energy band structure, (c) carrier concentration, (d) carrier recombination rate profile.

    图 4  不同吸收层掺杂浓度时电池的电流密度-电压特性曲线

    Fig. 4.  Current density-Voltage curves of graphene/AZTSe induced p-n junction solar cell with different values of absorber layer doping concentration.

    图 5  不同吸收层缺陷密度时的电流密度-电压特性曲线

    Fig. 5.  Current density-Voltage curves of graphene/AZTSe induced p-n junction solar cell with different values of absorber layer defect densities.

    表 1  模拟使用的主要材料参数

    Table 1.  Main material parameters used in the numerical simulation.

    参数AZTSe
    厚度/µm2
    相对介电常数 εr12.6
    电子亲和能 χe/eV4.2
    禁带宽度 Eg/eV1.4
    施主掺杂浓度 ND/cm–31011—1016
    导带有效态密度 Nc /cm–32.2 × 1018
    价带有效态密度Nv /cm–31.8 × 1019
    电子迁移率 µn/cm2·V–1·s–1100
    空穴迁移率 µp/cm2·V-1·s–12
    缺陷密度 Nt/cm–31013—1018
    下载: 导出CSV
  • [1]

    Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W C, Goodrich A, Noufi R 2012 Sol. Energy Mater. Sol.Cells 101 154Google Scholar

    [2]

    Liu F, Sun K, Li W, Yan C, Cui H, Jiang L, Hao X, Green M A 2014 Appl. Phys. Lett. 104 051105Google Scholar

    [3]

    Zeng X, Tai K F, Zhang T, Ho C W J, Chen X, Huan A, Sum T C, Wong L H 2014 Sol. Energy Mater. Sol. Cells 124 55Google Scholar

    [4]

    Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902Google Scholar

    [5]

    Gokmen T, Gunawan O, Todorov T K, Mitzi D B 2013 Appl. Phys. Lett. 103 103506Google Scholar

    [6]

    Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar

    [7]

    Yeh L Y, Cheng K W 2014 Thin Solid Films 558 289Google Scholar

    [8]

    Patil R M, Nagapure D R, Chandra G H, Subbaiah Y P V, Gupta M, Rao R P 2020 Phys. Status Solidi 217 1900752Google Scholar

    [9]

    Yuan Z K, Chen S, Xiang H, Gong X G, Walsh A, Park J S, Repins I, Wei S H 2015 Adv. Funct. Mater. 25 6733Google Scholar

    [10]

    Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R, Gershon T S 2016 J. Chem. Phys. 144 104704Google Scholar

    [11]

    Gershon T, Sardashti K, Gunawan O, Mankad R, Singh S, Lee Y S, Ott J A, Kummel A, Haight R 2016 Adv. Energy Mater. 6 1601182Google Scholar

    [12]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar

    [13]

    曹宇, 祝新运, 陈瀚博, 王长刚, 张鑫童, 候秉东, 申明仁, 周静 2018 物理学报 67 247301Google Scholar

    Cao Y, Zhu X Y, Chen H B, Wang C G, Zhang X T, Hou B D, Shen M R, Zhou J 2018 Acta Phys. Sin. 67 247301Google Scholar

    [14]

    梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军 2020 物理学报 69 057901Google Scholar

    Liang X J, Cao Y, Cai H K, Su J, Ni J, Li J, Zhang J J 2020 Acta Phys. Sin. 69 057901Google Scholar

    [15]

    张翱, 张春秀, 陈云林, 张春梅, 孟涛 2020 物理学报 69 118801Google Scholar

    Zhang A, Zhang C X, Chen Y L, Zhang C M, Meng T 2020 Acta Phys. Sin. 69 118801Google Scholar

    [16]

    Gershon T, Sardashti K, Lee Y S, Gunawan O, Singh S, Bishop D, Kummel A C, Haight R 2017 Acta Mater. 126 383Google Scholar

    [17]

    Gershon T, Gunawan O, Gokmen T, Brew K W, Singh S, Hopstaken M, Poindester J R, Barnard E S, Buonassisi T, Haight R 2017 J. Appl. Phys. 121 174501Google Scholar

    [18]

    Jia J, Li Y, Yao B, Ding Z, Deng R, Jiang Y, Sui Y 2017 J. Appl. Phys. 121 215305Google Scholar

    [19]

    Jiang Y, Yao B, Jia J, Ding Z, Deng R, Liu D, Sui Y, Wang H, Li Y 2019 J. Appl. Phys. 125 025703Google Scholar

    [20]

    Hibino H, Kageshima H, Kotsugi M, Maeda F, Guo F Z, Watanabe Y 2009 Phys. Rev. B 79 125437Google Scholar

    [21]

    Garg R, Dutta N K, Choudhury N R 2014 Nanomaterials 4 267Google Scholar

    [22]

    Kim J H, Hwang J H, Suh J, Tongay S, Kwon S, Hwang C C, Wu J, Park J Y 2013 Appl. Phys. Lett. 103 171604Google Scholar

    [23]

    Seo J, Bong J, Cha J, Lim T, Son J, Park S H, Hwang J, Hong S, Ju S 2014 J. Appl. Phys. 116 084312Google Scholar

    [24]

    Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34Google Scholar

    [25]

    Gerling L G, Voz C, Alcubilla R, Puigdollers J 2017 J. Mater. Res. 32 260Google Scholar

    [26]

    Dréon J, Jeangros Q, Cattin J, Haschke J, Antognini L, Ballif C, Boccard M 2020 Nano Energy 70 104495Google Scholar

  • [1] 李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴. 新型硒化锑薄膜太阳电池背接触优化. 物理学报, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [2] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [3] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化. 物理学报, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [4] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [5] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [6] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [7] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [8] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [9] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [10] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [11] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [12] 曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静. 硒化锑薄膜太阳电池的模拟与结构优化研究. 物理学报, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [13] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究. 物理学报, 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [14] 冯奇, 李梦凯, 唐海通, 王晓东, 高忠民, 孟繁玲. 石墨烯/聚乙烯醇/聚偏氟乙烯基纳米复合薄膜的介电性能. 物理学报, 2016, 65(18): 188101. doi: 10.7498/aps.65.188101
    [15] 禹忠, 党忠, 柯熙政, 崔真. N/B掺杂石墨烯的光学与电学性质. 物理学报, 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [16] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [17] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用. 物理学报, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [18] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性. 物理学报, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [19] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [20] 金 鑫, 张晓丹, 雷志芳, 熊绍珍, 宋 峰, 赵 颖. 薄膜太阳电池用纳米上转换材料制备及其特性研究. 物理学报, 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
计量
  • 文章访问数:  7218
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-26
  • 修回日期:  2020-08-28
  • 上网日期:  2020-12-18
  • 刊出日期:  2021-01-05

/

返回文章
返回