搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶非对称耦合系统在对称周期势中的定向输运

屠浙 赖莉 罗懋康

引用本文:
Citation:

分数阶非对称耦合系统在对称周期势中的定向输运

屠浙, 赖莉, 罗懋康

Directional transport of fractional asymmetric coupling system in symmetric periodic potential

Tu Zhe, Lai Li, Luo Mao-Kang
PDF
导出引用
  • 在没有外力且周期势对称的情况下,对非对称耦合粒子链的运动,以具备更强刻画能力的分数阶微积分理论建立了分数阶模型,对其定向输运现象进行针对性研究,采用分数阶差分法进行数值求解并分析系统参数对定向输运速度的影响. 相应仿真表明,分数阶非对称耦合系统在没有外力和噪声驱动的情况下仍能产生定向输运,且输运速度随阶数的增大而增大;当阶数固定时,粒子链平均速度随耦合强度和势垒高度非单调变化;当系统存在噪声时,粒子链平均速度出现了广义随机共振现象,且通过调节其他参数,可使得系统对噪声免疫甚至使噪声促进定向输运.
    Based on the fractional calculus theory, in the absence of external driving force, the fractional transport model of asymmetric coupling particle chain in symmetric periodic potential is established. Using the method of fractional difference, the model is solved numerically and the influences of the various system parameters on directional transport velocity are discussed. Numerical results show that in the case without external force and noise-driven, the fractional asymmetric coupling system can still generate directional transport, and the transport velocity increases as fractional order increases. When the fractional order is fixed, the average velocity of the particle chain varies non-monotonically with coupling strength and barrier height. In the case with noise, the generalized stochastic resonance phenomenon occurs. Besides, we can make the noise not affect the system or even promote directional transport by adjusting other parameters.
    • 基金项目: 国家自然科学基金(批准号:11171238)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11171238).
    [1]

    Fendrik A J, Romanelli L, Reale M V 2012 Phys. Rev. E 85 041149

    [2]

    Zheng Z G 2004 Spantiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) p279 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为 (北京: 高等教育出版社) 第279页]

    [3]

    Guérin T, Prost J, Martin P 2010 Current Opinnion in Cell Biology 22 14

    [4]

    Chen H B, Zheng Z G 2012 J. Univ. Shanghai Sci. Technol. 34 6 (in Chinese) [陈宏斌, 郑志刚 2012 上海理工大学学报 34 6]

    [5]

    Savel E S, Marchesoni F, Nori F 2003 Phys. Rev. Lett. 91 10601

    [6]

    Veigel C, Schmidt C F 2011 Nat. Rev. Mol. Cel. Biol. 12 163

    [7]

    Lipowsky R, Klumpp S, Nieuwenhuizen T M 2001 Phys. Rev. Lett. 87 108101

    [8]

    Downton M T, Zuckermann M J, Craig E M, Plischke M, Linke H 2006 Phys. Rev. E 73 011909

    [9]

    Roostalu J, Hetrich C, Bieling P, Telley I A, Schiebel E, Surrey T 2011 Science 332 94

    [10]

    Porto M, Urbakh M, Klafter J 2000 Phys. Rev. Lett. 84 6058

    [11]

    Zheng Z G, Hu G, Hu B 2001 Phys. Rev. Lett. 86 2273

    [12]

    Bao J D 2012 Introduction to Anomalous Statistics Dynamics (Beijing: Science Press) p196 (in Chinese) [包景东 2012 反常统计动力学导论 (北京: 科学出版社) 第196页]

    [13]

    Liu F, Anh V V, Turner I, Zhuang P 2003 J. Appl. Math. Comp. 13 233

    [14]

    Bai W S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [15]

    Benson D A, Wheatcraft S W, Meerschaert M M 2000 Water Resour. Res. 36 1403

    [16]

    Tu Z, Peng H, Wang F, Ma H 2013 Acta Phys. Sin. 62 030502 (in Chinese) [屠浙, 彭皓, 王飞, 马洪 2013 物理学报 62 030502]

    [17]

    Lai L, Zhou X X, Ma H, Luo M K 2013 Acta Phys. Sin. 62 150502 (in Chinese) [赖莉, 周薛雪, 马洪, 罗懋康 2013 物理学报 62 150502]

    [18]

    Zhang L, Deng K, Luo M K 2012 Chin. Phys. B 21 090505

    [19]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [20]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) p80 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第80页]

    [21]

    Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press)

    [22]

    Podlubny I 1998 Fractional Differential Equation (San Diego: Academic Press)

    [23]

    Petrás I 2011 Fractional-Order Nonlinear Systerms Modeling, Analysis and Simulation (1st Ed.) (Beijing: Higher Education Press) p19

  • [1]

    Fendrik A J, Romanelli L, Reale M V 2012 Phys. Rev. E 85 041149

    [2]

    Zheng Z G 2004 Spantiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) p279 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为 (北京: 高等教育出版社) 第279页]

    [3]

    Guérin T, Prost J, Martin P 2010 Current Opinnion in Cell Biology 22 14

    [4]

    Chen H B, Zheng Z G 2012 J. Univ. Shanghai Sci. Technol. 34 6 (in Chinese) [陈宏斌, 郑志刚 2012 上海理工大学学报 34 6]

    [5]

    Savel E S, Marchesoni F, Nori F 2003 Phys. Rev. Lett. 91 10601

    [6]

    Veigel C, Schmidt C F 2011 Nat. Rev. Mol. Cel. Biol. 12 163

    [7]

    Lipowsky R, Klumpp S, Nieuwenhuizen T M 2001 Phys. Rev. Lett. 87 108101

    [8]

    Downton M T, Zuckermann M J, Craig E M, Plischke M, Linke H 2006 Phys. Rev. E 73 011909

    [9]

    Roostalu J, Hetrich C, Bieling P, Telley I A, Schiebel E, Surrey T 2011 Science 332 94

    [10]

    Porto M, Urbakh M, Klafter J 2000 Phys. Rev. Lett. 84 6058

    [11]

    Zheng Z G, Hu G, Hu B 2001 Phys. Rev. Lett. 86 2273

    [12]

    Bao J D 2012 Introduction to Anomalous Statistics Dynamics (Beijing: Science Press) p196 (in Chinese) [包景东 2012 反常统计动力学导论 (北京: 科学出版社) 第196页]

    [13]

    Liu F, Anh V V, Turner I, Zhuang P 2003 J. Appl. Math. Comp. 13 233

    [14]

    Bai W S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪 2012 物理学报 61 210501]

    [15]

    Benson D A, Wheatcraft S W, Meerschaert M M 2000 Water Resour. Res. 36 1403

    [16]

    Tu Z, Peng H, Wang F, Ma H 2013 Acta Phys. Sin. 62 030502 (in Chinese) [屠浙, 彭皓, 王飞, 马洪 2013 物理学报 62 030502]

    [17]

    Lai L, Zhou X X, Ma H, Luo M K 2013 Acta Phys. Sin. 62 150502 (in Chinese) [赖莉, 周薛雪, 马洪, 罗懋康 2013 物理学报 62 150502]

    [18]

    Zhang L, Deng K, Luo M K 2012 Chin. Phys. B 21 090505

    [19]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [20]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) p80 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第80页]

    [21]

    Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press)

    [22]

    Podlubny I 1998 Fractional Differential Equation (San Diego: Academic Press)

    [23]

    Petrás I 2011 Fractional-Order Nonlinear Systerms Modeling, Analysis and Simulation (1st Ed.) (Beijing: Higher Education Press) p19

  • [1] 杨春林. 散斑场的随机波数及其参量非线性效应. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231235
    [2] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [3] 王玉坤, 李泽阳, 许康, 王子正. 制备-测量量子比特系统的自测试标准. 物理学报, 2023, 72(10): 100303. doi: 10.7498/aps.72.20222431
    [4] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [5] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [6] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [7] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振. 物理学报, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [8] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [9] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220270
    [10] 蔡子. 非平衡量子物态中的对称性与时间维度效应. 物理学报, 2021, 70(23): 230310. doi: 10.7498/aps.70.20211741
    [11] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [12] 李娜, 李昌勇. 邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211659
    [13] 孙静静, 张磊, 甄胜来, 曹志刚, 张国生, 俞本立. 深海原位激光多普勒测速系统. 物理学报, 2021, 70(21): 214205. doi: 10.7498/aps.70.20210367
    [14] 李风华, 王翰卓. 利用随机多项式展开的海底声学参数反演方法. 物理学报, 2021, 70(17): 174305. doi: 10.7498/aps.70.20210119
    [15] 任波, 佘彦超, 徐小凤, 叶伏秋. 高阶效应下对称三量子点系统中光孤子稳定性研究. 物理学报, 2021, 70(22): 224205. doi: 10.7498/aps.70.20210942
    [16] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [17] 郑丽仙, 胡剑峰, 骆军. 铜掺杂Cu2SnSe4的热电输运性能. 物理学报, 2020, 69(24): 247102. doi: 10.7498/aps.69.20200861
    [18] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [19] 张旭, 曹佳慧, 艾保全, 高天附, 郑志刚. 摩擦不对称耦合布朗马达的定向输运. 物理学报, 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [20] 武瑞琪, 郭迎春, 王兵兵. SF6分子最高占据轨道对称性的判断. 物理学报, 2019, 68(8): 080201. doi: 10.7498/aps.68.20182231
计量
  • 文章访问数:  4660
  • PDF下载量:  512
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-15
  • 修回日期:  2014-02-25
  • 刊出日期:  2014-06-05

/

返回文章
返回