搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶双头分子马达的欠扩散输运现象

林丽烽 周兴旺 马洪

引用本文:
Citation:

分数阶双头分子马达的欠扩散输运现象

林丽烽, 周兴旺, 马洪

Subdiffusive transport of fractional two-headed molecular motor

Lin Li-Feng, Zhou Xing-Wang, Ma Hong
PDF
导出引用
  • 研究具有幂律记忆性的细胞液中双头分子马达的定向输运现象,选取幂函数作为广义Langevin方程的阻尼核函数,建立了分数阶过阻尼耦合Brown马达模型,讨论了阶数及耦合系数对双头分子马达定向输运速度的影响. 仿真结果表明,分数阶过阻尼双头分子马达也会产生定向输运现象,并且在某些阶数下会产生整数阶情形所不具有的反向定向流. 当噪声强度固定时,输运速度随着阶数以及耦合系数的变化均会出现广义随机共振现象. 特别地,研究发现双头分子马达在记忆闪烁棘轮势中具有某些单头分子马达所不具备的运动特性,定向流的大小和方向由噪声与双头间作用力相互耦合控制.
    Focusing on the directed transport phenomena of the two-headed molecular motor, we adopt power function as the damping kernel function of general Langevin equation due to the power-law memory characteristics of cytosol in biological cells and present the model of fractional coupling Brownian motor in overdamped condition in this paper. We also discuss the influences of fractional order and coupling factor on the transport speed. From the simulation results there are found the directed transport phenomena and the inverse transport which is not seen in the conventional Brownian motor, in the overdamped fractional coupling Brownian motor. When the noise density is fixed, the generalized stochastic resonance appears when transport speed varies with the fractional order and coupling factor. In particular, the results reveal that the magnitude and direction of the directional flow are controlled by coupling the noise with the interaction force between the two heads, which is the movement characteristic of the two-headed molecular motor in the memory ratchet, rather than of the single-headed motor.
    • 基金项目: 国家自然科学基金(批准号:11171238)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11171238).
    [1]

    Vale R D, Milligan R A 2000 Science 288 88

    [2]

    Nishyama M, Muto E, Inoue Y 2002 Nature Cell Biology 3 425

    [3]

    Howard J 1997 Nature 389 561

    [4]

    Hancock W O, Howard J, Gelles J 1998 Cell Biol. 140 1395

    [5]

    Young E C, Mahtani H K, Gelles J 1998 Biochemistry 37 3467

    [6]

    Kelly T R, Silva H, Silva R A 1999 Nature 401 150

    [7]

    Endow S A, Higuchi H 2000 Nature 406 913

    [8]

    Liu H, Schmidt J J, Bachand G D, Rizk S S, Looger L L, Hellinga H W, Montemagno C D 2002 Nature Mater. 1 173

    [9]

    Ren Q, Zhao Y P, Yue J C, Cui Y B 2006 Biomed. Microdev. 8 201

    [10]

    Su T, Cui Y B, Zhang X A, Liu X, Yue J C, Liu N, Jiang P 2006 Biochem. Biophys. Res. Commun. 350 1013

    [11]

    Deng Z T, Zhang Y, Yue J C, Tang F Q, Wei Q 2007 J. Phys. Chem. B 41 12024

    [12]

    Qi W, Duan L, Wang K W, Yan X H, Citi Y, He Q, Li J B 2008 Adv. Mater. 20 601

    [13]

    Song W X, He Q, Cui Y, Möhwald H, Diez S, Li J B 2009 Biochem. Biophys. Res. Commun. 379 175

    [14]

    Song W X, Möhwald H, Li J B, 2010 Biomaterials 31 1287

    [15]

    Zhao T J, Zhan Y, Yu H, Ji Q 2003 Commun. Theor. Phys. 39 121

    [16]

    Zhao T J, Zhan Y, Yu H, Song Y L, An H L 2003 Commun. Theor. Phys. 39 653

    [17]

    Han Y R, Zhao T J, Zhan Y, Yan W L 2005 Commun. Theor. Phys. 43 377

    [18]

    Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810

    [19]

    Wang H Y, He H S, Bao J D 2005 Commun. Theor. Phys. 43 229

    [20]

    Hänggi P, Marchesoni F, Nori F 2005 Ann. Phys. 14 51

    [21]

    Chen H B, Wang Q W, Zheng Z G 2005 Phys. Rev. E 71 031102

    [22]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

    [23]

    Wang H Y 2007 Commun. Theor. Phys. 48 859

    [24]

    von Gehlen S, Evstigneev M, Reimann P 2008 Phys. Rev. E 77 031136

    [25]

    Zheng Z G, Chen H B 2010 EPL 92 30004

    [26]

    Kharchenko V, Goychuk I 2012 New J. Phys. 14 043042

    [27]

    Gao T F, Zhang Y, Chen J C 2009 Chin. Phys. B 18 3279

    [28]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [29]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [30]

    Lai L, Zhou X X, Ma H, Luo M K 2013 Acta Phys. Sin. 62 150502 (in Chinese) [赖莉, 周薛雪, 马洪, 罗懋康 2013 物理学报 62 150502]

    [31]

    Gitterman M 2005 Phys. Stat. Mech. Appl. 352 309

    [32]

    Zhang J Q, Xin H W 2001 Prog. Chem. 13 241 (in Chinese) [张季谦, 辛厚文 2001 化学进展 13 241]

    [33]

    Bao J D 2009 Stochastic Simulation Method of Classic and Quantum Dissipative Sysmtem (Beijing: Science Press) p160 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第160页]

    [34]

    Gemant A 1936 Physics 7 311

    [35]

    Gao S L, Zhong S C, Wei K, Ma H 2012 Acta Phys. Sin. 61 100502 (in Chinese) [高仕龙, 钟苏川, 韦鹍, 马洪 2012 物理学报 61 100502]

    [36]

    Liu F, Anh V, Turner I, Zhuang P 2003 J. Appl. Math. Comput. 13 233

    [37]

    Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810

    [38]

    Xu R G, Hu X L, Wu C X 2007 J. Donghua Univ. (Natural Science) 33 549 (in Chinese) [徐荣归, 胡锡龙, 吴承训 2007 东华大学学报(自然科学版) 33 549]

    [39]

    Asbury C L, Fehr A N, Block S M 2003 Science 302 2130

    [40]

    Yildiz A, Tomishge M, Vale R D, Selvin P R 2004 Science 303 676

    [41]

    Hua W, Chung J, Gelles J 2002 Science 295 844

    [42]

    Bai W S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪2012 物理学报 61 210501]

    [43]

    Podlubny I 1998 Fractional Differential Equation (San Diego: Academic Press)

    [44]

    Shao Q, Gao Y Q 2006 PNAS 21 103

    [45]

    Csahó k Z, Family F, Vicsek T 1997 Phys. Rev. E 55 5179

  • [1]

    Vale R D, Milligan R A 2000 Science 288 88

    [2]

    Nishyama M, Muto E, Inoue Y 2002 Nature Cell Biology 3 425

    [3]

    Howard J 1997 Nature 389 561

    [4]

    Hancock W O, Howard J, Gelles J 1998 Cell Biol. 140 1395

    [5]

    Young E C, Mahtani H K, Gelles J 1998 Biochemistry 37 3467

    [6]

    Kelly T R, Silva H, Silva R A 1999 Nature 401 150

    [7]

    Endow S A, Higuchi H 2000 Nature 406 913

    [8]

    Liu H, Schmidt J J, Bachand G D, Rizk S S, Looger L L, Hellinga H W, Montemagno C D 2002 Nature Mater. 1 173

    [9]

    Ren Q, Zhao Y P, Yue J C, Cui Y B 2006 Biomed. Microdev. 8 201

    [10]

    Su T, Cui Y B, Zhang X A, Liu X, Yue J C, Liu N, Jiang P 2006 Biochem. Biophys. Res. Commun. 350 1013

    [11]

    Deng Z T, Zhang Y, Yue J C, Tang F Q, Wei Q 2007 J. Phys. Chem. B 41 12024

    [12]

    Qi W, Duan L, Wang K W, Yan X H, Citi Y, He Q, Li J B 2008 Adv. Mater. 20 601

    [13]

    Song W X, He Q, Cui Y, Möhwald H, Diez S, Li J B 2009 Biochem. Biophys. Res. Commun. 379 175

    [14]

    Song W X, Möhwald H, Li J B, 2010 Biomaterials 31 1287

    [15]

    Zhao T J, Zhan Y, Yu H, Ji Q 2003 Commun. Theor. Phys. 39 121

    [16]

    Zhao T J, Zhan Y, Yu H, Song Y L, An H L 2003 Commun. Theor. Phys. 39 653

    [17]

    Han Y R, Zhao T J, Zhan Y, Yan W L 2005 Commun. Theor. Phys. 43 377

    [18]

    Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810

    [19]

    Wang H Y, He H S, Bao J D 2005 Commun. Theor. Phys. 43 229

    [20]

    Hänggi P, Marchesoni F, Nori F 2005 Ann. Phys. 14 51

    [21]

    Chen H B, Wang Q W, Zheng Z G 2005 Phys. Rev. E 71 031102

    [22]

    Zheng Z G, Cross M C, Hu G 2002 Phys. Rev. Lett. 89 154102

    [23]

    Wang H Y 2007 Commun. Theor. Phys. 48 859

    [24]

    von Gehlen S, Evstigneev M, Reimann P 2008 Phys. Rev. E 77 031136

    [25]

    Zheng Z G, Chen H B 2010 EPL 92 30004

    [26]

    Kharchenko V, Goychuk I 2012 New J. Phys. 14 043042

    [27]

    Gao T F, Zhang Y, Chen J C 2009 Chin. Phys. B 18 3279

    [28]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [29]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [30]

    Lai L, Zhou X X, Ma H, Luo M K 2013 Acta Phys. Sin. 62 150502 (in Chinese) [赖莉, 周薛雪, 马洪, 罗懋康 2013 物理学报 62 150502]

    [31]

    Gitterman M 2005 Phys. Stat. Mech. Appl. 352 309

    [32]

    Zhang J Q, Xin H W 2001 Prog. Chem. 13 241 (in Chinese) [张季谦, 辛厚文 2001 化学进展 13 241]

    [33]

    Bao J D 2009 Stochastic Simulation Method of Classic and Quantum Dissipative Sysmtem (Beijing: Science Press) p160 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京: 科学出版社) 第160页]

    [34]

    Gemant A 1936 Physics 7 311

    [35]

    Gao S L, Zhong S C, Wei K, Ma H 2012 Acta Phys. Sin. 61 100502 (in Chinese) [高仕龙, 钟苏川, 韦鹍, 马洪 2012 物理学报 61 100502]

    [36]

    Liu F, Anh V, Turner I, Zhuang P 2003 J. Appl. Math. Comput. 13 233

    [37]

    Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810

    [38]

    Xu R G, Hu X L, Wu C X 2007 J. Donghua Univ. (Natural Science) 33 549 (in Chinese) [徐荣归, 胡锡龙, 吴承训 2007 东华大学学报(自然科学版) 33 549]

    [39]

    Asbury C L, Fehr A N, Block S M 2003 Science 302 2130

    [40]

    Yildiz A, Tomishge M, Vale R D, Selvin P R 2004 Science 303 676

    [41]

    Hua W, Chung J, Gelles J 2002 Science 295 844

    [42]

    Bai W S M, Peng H, Tu Z, Ma H 2012 Acta Phys. Sin. 61 210501 (in Chinese) [白文斯密, 彭皓, 屠浙, 马洪2012 物理学报 61 210501]

    [43]

    Podlubny I 1998 Fractional Differential Equation (San Diego: Academic Press)

    [44]

    Shao Q, Gao Y Q 2006 PNAS 21 103

    [45]

    Csahó k Z, Family F, Vicsek T 1997 Phys. Rev. E 55 5179

  • [1] 刘天宇, 曹佳慧, 刘艳艳, 高天附, 郑志刚. 温度反馈控制棘轮的最优控制. 物理学报, 2021, 70(19): 190501. doi: 10.7498/aps.70.20210517
    [2] 张旭, 曹佳慧, 艾保全, 高天附, 郑志刚. 摩擦不对称耦合布朗马达的定向输运. 物理学报, 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [3] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究. 物理学报, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [4] 谢天婷, 邓科, 罗懋康. 二维非对称周期时移波状通道中的粒子定向输运问题. 物理学报, 2016, 65(15): 150501. doi: 10.7498/aps.65.150501
    [5] 吴魏霞, 宋艳丽, 韩英荣. 二维耦合定向输运模型研究. 物理学报, 2015, 64(15): 150501. doi: 10.7498/aps.64.150501
    [6] 杨建强, 马洪, 钟苏川. 分数阶对数耦合系统在非周期外力作用下的定向输运现象. 物理学报, 2015, 64(17): 170501. doi: 10.7498/aps.64.170501
    [7] 任芮彬, 刘德浩, 王传毅, 罗懋康. 时间非对称外力驱动分数阶布朗马达的定向输运. 物理学报, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [8] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运. 物理学报, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [9] 谢天婷, 张路, 王飞, 罗懋康. 双频驱动下分数阶过阻尼马达在空间对称势中的定向输运. 物理学报, 2014, 63(23): 230503. doi: 10.7498/aps.63.230503
    [10] 周兴旺, 林丽烽, 马洪, 罗懋康. 时间非对称分数阶类Langevin棘齿. 物理学报, 2014, 63(11): 110501. doi: 10.7498/aps.63.110501
    [11] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响. 物理学报, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [12] 屠浙, 赖莉, 罗懋康. 分数阶非对称耦合系统在对称周期势中的定向输运. 物理学报, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [13] 王飞, 邓翠, 屠浙, 马洪. 耦合分数阶布朗马达在非对称势中的输运. 物理学报, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [14] 吴魏霞, 郑志刚. 二维势场中弹性耦合粒子的定向输运研究. 物理学报, 2013, 62(19): 190511. doi: 10.7498/aps.62.190511
    [15] 林方, 胡丹青, 李乐乐. 用一种分数阶算法研究非马尔可夫过程中阻尼与涨落的竞争机制. 物理学报, 2013, 62(12): 120503. doi: 10.7498/aps.62.120503
    [16] 赖莉, 周薛雪, 马洪, 罗懋康. 分数阶布朗马达在闪烁棘齿势中的合作输运现象. 物理学报, 2013, 62(15): 150502. doi: 10.7498/aps.62.150502
    [17] 高仕龙, 钟苏川, 韦鹍, 马洪. 过阻尼分数阶Langevin方程及其随机共振. 物理学报, 2012, 61(10): 100502. doi: 10.7498/aps.61.100502
    [18] 白文斯密, 彭皓, 屠浙, 马洪. 分数阶Brown马达及其定向输运现象. 物理学报, 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [19] 吕艳, 王海燕, 包景东. 内部棘轮. 物理学报, 2010, 59(7): 4466-4471. doi: 10.7498/aps.59.4466
    [20] 展永, 包景东, 卓益忠, 吴锡真. 布朗马达的定向输运模型. 物理学报, 1997, 46(10): 1880-1887. doi: 10.7498/aps.46.1880
计量
  • 文章访问数:  4280
  • PDF下载量:  637
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-22
  • 修回日期:  2013-09-24
  • 刊出日期:  2013-12-05

分数阶双头分子马达的欠扩散输运现象

  • 1. 四川大学数学学院, 成都 610064;
  • 2. 福建农林大学计算机与信息学院, 福州 350002
    基金项目: 国家自然科学基金(批准号:11171238)资助的课题.

摘要: 研究具有幂律记忆性的细胞液中双头分子马达的定向输运现象,选取幂函数作为广义Langevin方程的阻尼核函数,建立了分数阶过阻尼耦合Brown马达模型,讨论了阶数及耦合系数对双头分子马达定向输运速度的影响. 仿真结果表明,分数阶过阻尼双头分子马达也会产生定向输运现象,并且在某些阶数下会产生整数阶情形所不具有的反向定向流. 当噪声强度固定时,输运速度随着阶数以及耦合系数的变化均会出现广义随机共振现象. 特别地,研究发现双头分子马达在记忆闪烁棘轮势中具有某些单头分子马达所不具备的运动特性,定向流的大小和方向由噪声与双头间作用力相互耦合控制.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回