搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维耦合定向输运模型研究

吴魏霞 宋艳丽 韩英荣

引用本文:
Citation:

二维耦合定向输运模型研究

吴魏霞, 宋艳丽, 韩英荣

A two-dimensional coupled directed transport model

Wu Wei-Xia, Song Yan-Li, Han Ying-Rong
PDF
导出引用
  • 建立了外部驱动力及噪声作用下的二维耦合定向输运模型, 其中的一个维度上为周期性分段棘齿势, 另一垂直维度上为周期性对称非棘齿势, 外部驱动力及噪声加在周期对称非棘齿势方向上, 而棘齿势方向不加任何驱动, 采用非平衡统计及非线性动力学理论研究了过阻尼情况下耦合系统在两个维度上的输运性质. 结果显示, 棘齿势与非棘齿势方向均可产生定向输运, 其中棘齿势方向的系统平均速度对耦合强度、噪声强度、驱动力强度及粒子数目均有明显的依赖性, 合适的耦合强度、噪声强度、驱动力强度或粒子数目下均可产生最大输运速度. 而非棘齿势方向的系统平均速度受非棘齿势势垒高度影响显著, 但随耦合强度、驱动力强度、驱动力初相位差及粒子数目的变化均出现波动现象, 表现出平均速度对这些参量的依赖性较弱.
    Under the effect of external driving force and noise, a directed transport model for coupled particles in a two-dimensional potential is established. Here, a one-dimensional potential is taken as the periodic piecewise ratchet potential, and the other one is taken as the periodic symmetric non-ratchet potential to which the external periodic driving force and noise are applied. According to the nonequilibrium statistical theory and the nonlinear dynamics, the transport characters of the coupled system in the overdamped case are researched and discussed. Numerical results show that an obvious directed transport can appear both in the ratchet potential and in the non-ratchet potential case. But, the average velocities of the coupled system in the two potentials have completely different dependence on the system parameters. In the case of ratchet potential, the average velocity is strongly dependent on the coupling intensity, noise intensity, the driving strength, and the particle population; the average velocity can reach the maximum at appropriate coupling intensity, noise intensity, the driving strength or the particle population. Otherwise, in the case of non-ratchet potential, the average velocity is strongly dependent on the barrier height for the non-ratchet potential, but fluctuates as the coupling intensity, the driving strength, the driving initial phase difference or the particle population varies. This shows that the average velocity of the coupled system in the non-ratchet potential has weak dependence on system parameters, including the coupling intensity, the driving strength, the driving initial phase difference and the particle population.
    • 基金项目: 北京市自然科学基金(批准号: 1144011)和北京市优秀人才培养项目(批准号: 2012D005004000005)资助的课题.
    • Funds: Project supported by the Beijing Natural Science Foundation, China (Grant No. 1144011), and the Beijing excellent talent training, China (Grant No. 2012D005004000005).
    [1]

    Reimann P, Hänggi P 2002 Appli. Phys. A 75 169

    [2]

    Linker H, Downton M T, Zuckermann M J 2005 Chaos 15 026111

    [3]

    Hänggi P, Marchesoni F, Nori F 2005 Ann. Phys. 14 51

    [4]

    Burada P S, Schmid G, Talkner P, Hänggi P, Reguera D, Rubí J M 2008 Biosystems 93 16

    [5]

    Xie H Z, Ai B Q, Liu X M, Liu L G, Li Z B 2009 Physica A 388 2093

    [6]

    Dan D, Jayannavar A M, Menon G 2003 Physica A 318 40

    [7]

    Wang H Y, Bao J D 2005 Physica A 357 373

    [8]

    Vincent U E, Senthilkumar D V, Mayer D, Kurths J 2010 Phys. Rev. E 82 046208

    [9]

    Vershnin M, Carter B C, Razafsky D S, King S J, Gross S P 2007 PNAS 104 87

    [10]

    Shtridelman Y, Cahyuti T, Townsend B, DeWitt D, Macosko J C 2008 Cell Biochem. Biophy. 52 19

    [11]

    Ali M Y, Lu H, Bookwalter C S, Warshaw D M, Trybus K M 2008 PNAS 105 4691

    [12]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [13]

    Fendrik A J, Romanelli L 2012 Phys. Rev. E 85 041149

    [14]

    Wang L F, Gao T F, Huang R Z, Zheng Y X 2013 Acta Phys. Sin. 62 070502 (in Chinese) [王莉芳, 高天附, 黄仁忠, 郑玉祥 2013 物理学报 62 070502]

    [15]

    Tu Z, Lai L, Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 物理学报 63 120503]

    [16]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [17]

    Avik W G, Sanjay V K 2000 Phys. Rev. Lett. 84 5243

    [18]

    Bao J D, Zhuo Y Z 1998 Phys. Lett. A 239 228

    [19]

    Zheng Z G, Chen H B 2010 Europhys. Lett. 92 30004

    [20]

    Wu W X, Zheng Z G 2013 Acta Phys. Sin. 62 190511 (in Chinese) [吴魏霞, 郑志刚 2013 物理学报 62 190511]

    [21]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) p326 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为(北京: 高等教育出版社)第324页]

    [22]

    Orlandi J G, Blanch-Mercader C, Brugués J, Casademunt J 2010 Phys. Rev. E 82 061903

    [23]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [24]

    Ai B Q, He Y F, Zhong W R 2014 Journal of Chemical Physics 141 194111

  • [1]

    Reimann P, Hänggi P 2002 Appli. Phys. A 75 169

    [2]

    Linker H, Downton M T, Zuckermann M J 2005 Chaos 15 026111

    [3]

    Hänggi P, Marchesoni F, Nori F 2005 Ann. Phys. 14 51

    [4]

    Burada P S, Schmid G, Talkner P, Hänggi P, Reguera D, Rubí J M 2008 Biosystems 93 16

    [5]

    Xie H Z, Ai B Q, Liu X M, Liu L G, Li Z B 2009 Physica A 388 2093

    [6]

    Dan D, Jayannavar A M, Menon G 2003 Physica A 318 40

    [7]

    Wang H Y, Bao J D 2005 Physica A 357 373

    [8]

    Vincent U E, Senthilkumar D V, Mayer D, Kurths J 2010 Phys. Rev. E 82 046208

    [9]

    Vershnin M, Carter B C, Razafsky D S, King S J, Gross S P 2007 PNAS 104 87

    [10]

    Shtridelman Y, Cahyuti T, Townsend B, DeWitt D, Macosko J C 2008 Cell Biochem. Biophy. 52 19

    [11]

    Ali M Y, Lu H, Bookwalter C S, Warshaw D M, Trybus K M 2008 PNAS 105 4691

    [12]

    Zhao A K, Zhang H W, Li Y X 2010 Chin. Phys. B 19 110506

    [13]

    Fendrik A J, Romanelli L 2012 Phys. Rev. E 85 041149

    [14]

    Wang L F, Gao T F, Huang R Z, Zheng Y X 2013 Acta Phys. Sin. 62 070502 (in Chinese) [王莉芳, 高天附, 黄仁忠, 郑玉祥 2013 物理学报 62 070502]

    [15]

    Tu Z, Lai L, Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 物理学报 63 120503]

    [16]

    Zhang H W, Wen S T, Chen G R, Li Y X, Cao Z X, Li W 2012 Chin. Phys. B 21 038701

    [17]

    Avik W G, Sanjay V K 2000 Phys. Rev. Lett. 84 5243

    [18]

    Bao J D, Zhuo Y Z 1998 Phys. Lett. A 239 228

    [19]

    Zheng Z G, Chen H B 2010 Europhys. Lett. 92 30004

    [20]

    Wu W X, Zheng Z G 2013 Acta Phys. Sin. 62 190511 (in Chinese) [吴魏霞, 郑志刚 2013 物理学报 62 190511]

    [21]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) p326 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为(北京: 高等教育出版社)第324页]

    [22]

    Orlandi J G, Blanch-Mercader C, Brugués J, Casademunt J 2010 Phys. Rev. E 82 061903

    [23]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [24]

    Ai B Q, He Y F, Zhong W R 2014 Journal of Chemical Physics 141 194111

  • [1] 彭皓, 任芮彬, 钟扬帆, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象. 物理学报, 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [2] 刘天宇, 曹佳慧, 刘艳艳, 高天附, 郑志刚. 温度反馈控制棘轮的最优控制. 物理学报, 2021, 70(19): 190501. doi: 10.7498/aps.70.20210517
    [3] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [4] 张高见, 王逸璞. 腔光子-自旋波量子耦合系统中各向异性奇异点的实验研究. 物理学报, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [5] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [6] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究. 物理学报, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [7] 谢天婷, 邓科, 罗懋康. 二维非对称周期时移波状通道中的粒子定向输运问题. 物理学报, 2016, 65(15): 150501. doi: 10.7498/aps.65.150501
    [8] 任芮彬, 刘德浩, 王传毅, 罗懋康. 时间非对称外力驱动分数阶布朗马达的定向输运. 物理学报, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [9] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运. 物理学报, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [10] 周兴旺, 林丽烽, 马洪, 罗懋康. 时间非对称分数阶类Langevin棘齿. 物理学报, 2014, 63(11): 110501. doi: 10.7498/aps.63.110501
    [11] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响. 物理学报, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [12] 屠浙, 赖莉, 罗懋康. 分数阶非对称耦合系统在对称周期势中的定向输运. 物理学报, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [13] 林丽烽, 周兴旺, 马洪. 分数阶双头分子马达的欠扩散输运现象. 物理学报, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [14] 吴魏霞, 郑志刚. 二维势场中弹性耦合粒子的定向输运研究. 物理学报, 2013, 62(19): 190511. doi: 10.7498/aps.62.190511
    [15] 白文斯密, 彭皓, 屠浙, 马洪. 分数阶Brown马达及其定向输运现象. 物理学报, 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [16] 白占国, 董丽芳, 李永辉, 范伟丽. 双层耦合Lengel-Epstein模型中的超点阵斑图. 物理学报, 2011, 60(11): 118201. doi: 10.7498/aps.60.118201
    [17] 吕艳, 王海燕, 包景东. 内部棘轮. 物理学报, 2010, 59(7): 4466-4471. doi: 10.7498/aps.59.4466
    [18] 林 敏, 方利民, 朱若谷. 双频信号作用下耦合双稳系统的双共振特性. 物理学报, 2008, 57(5): 2638-2642. doi: 10.7498/aps.57.2638
    [19] 莫嘉琪, 王 辉, 林万涛, 林一骅. 赤道东太平洋SST的海-气振子模型. 物理学报, 2006, 55(1): 6-9. doi: 10.7498/aps.55.6
    [20] 崔元顺. 介观多环耦合系统中的量子电流增强效应. 物理学报, 2005, 54(4): 1799-1803. doi: 10.7498/aps.54.1799
计量
  • 文章访问数:  2689
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-23
  • 修回日期:  2015-03-18
  • 刊出日期:  2015-08-05

二维耦合定向输运模型研究

  • 1. 北京印刷学院基础部, 北京 102600;
  • 2. 天津大学理学院, 天津 300072;
  • 3. 河北工业大学理学院, 天津 300401
    基金项目: 北京市自然科学基金(批准号: 1144011)和北京市优秀人才培养项目(批准号: 2012D005004000005)资助的课题.

摘要: 建立了外部驱动力及噪声作用下的二维耦合定向输运模型, 其中的一个维度上为周期性分段棘齿势, 另一垂直维度上为周期性对称非棘齿势, 外部驱动力及噪声加在周期对称非棘齿势方向上, 而棘齿势方向不加任何驱动, 采用非平衡统计及非线性动力学理论研究了过阻尼情况下耦合系统在两个维度上的输运性质. 结果显示, 棘齿势与非棘齿势方向均可产生定向输运, 其中棘齿势方向的系统平均速度对耦合强度、噪声强度、驱动力强度及粒子数目均有明显的依赖性, 合适的耦合强度、噪声强度、驱动力强度或粒子数目下均可产生最大输运速度. 而非棘齿势方向的系统平均速度受非棘齿势势垒高度影响显著, 但随耦合强度、驱动力强度、驱动力初相位差及粒子数目的变化均出现波动现象, 表现出平均速度对这些参量的依赖性较弱.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回