搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时频差的正交容积卡尔曼滤波跟踪算法

逯志宇 王大鸣 王建辉 王跃

引用本文:
Citation:

基于时频差的正交容积卡尔曼滤波跟踪算法

逯志宇, 王大鸣, 王建辉, 王跃

A tracking algorithm based on orthogonal cubature Kalman filter with TDOA and FDOA

Lu Zhi-Yu, Wang Da-Ming, Wang Jian-Hui, Wang Yue
PDF
导出引用
  • 针对基于时频差测量的无源跟踪中面临的非线性估计问题, 提出一种正交容积卡尔曼滤波跟踪算法. 该算法在容积卡尔曼滤波算法的基础上, 通过引入特定正交矩阵改进容积采样方法, 在高维状态估计下减小因采样产生的误差, 在没有增加计算量的前提下, 有效提高收敛速度及跟踪精度. 仿真结果表明, 在基于到达时差和到达频差的联合无源跟踪问题中, 与扩展卡尔曼滤波及容积卡尔曼滤波算法相比, 本文所提算法在跟踪性能上有明显提升.
    In a passive target tracking system, the position and velocity of a target can be estimated based on time difference of arrival (TDOA) and frequency difference of arrival (FDOA) received by different stations. But TDOA and FDOA equations are nonlinear, which make the target tracking become a nonlinear estimation problem. To solve the nonlinear estimation problem, the most extensive research algorithms are those of extended Kalman filter (EKF), particle filter (PF), unscented Kalman filter (UKF), quadrature Kalman filter (QKF), and cubature Kalman filter (CKF). But the existing algorithms all come up with shortcoming in some way. EKF only retains the first order of the nonlinear function by Taylor series expansion, which will bring large error. PF has to face the degeneracy phenomenon and the problem of large computational complexity. The standard UKF is easy to become divergence in a high dimensional state estimation. QKF is sensitive to the dimension of state, and the calculation is of exponential growth with the growth of dimension. Although CKF can effectively improve the shortcomings, the discarded error is proportional to the state dimension, which may be large in high dimensional state. In view of the above problems, this paper presents an orthogonal cubature Kalman filter (OCKF) algorithm. This algorithm reduces the sampling error by introducing special orthogonal matrix to change the method of cubature sampling based on CKF. It eliminates the dimension impact on the sampling error. In the absence of additional computation, it effectively improves the tracking precision. Simulation results show that, based on the TDOA and FDOA, compared with the EKF and CKF algorithms, OCKF algorithm can improve the tracking performance significantly.
    • 基金项目: 国家高技术研究发展计划(批准号: 2012AA01A502, 2012AA01A505)和国家自然科学基金(批准号: 61401513)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant Nos. 2012AA01A502, 2012AA01A505), and the National Natural Science Foundation of China (Grant No. 61401513).
    [1]

    Lin C M, Hsueh C S 2013 IEEE Transactions on Instrumentation and Measurement 7 2058

    [2]

    Ho K C, Xu W W 2004 IEEE Transactions on Signal Processing 52 2453

    [3]

    Arie Yeredor, Eyal Angel 2011 IEEE Transactions On Signal Processing 59 1612

    [4]

    Wang G, Li Y M, Ansari N 2013 IEEE Transactions On Vehicular Technology 62 853

    [5]

    Luo L, Tian Z S, Chen J Y 2009 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition) 01 50 (in Chinese) [罗磊, 田增山, 陈俊亚 2009 重庆邮电大学学报(自然科学版) 01 50]

    [6]

    Gustafsson F, Hendeby G 2012 IEEE Transactions on Signal Processing 02 545

    [7]

    Ning X L, Wang H L, Zhang Q, Chen L H 2010 Acta Phys. Sin. 59 4426 (in Chinese) [宁小磊, 王宏力, 张琪, 陈连华 2010 物理学报 59 4426]

    [8]

    Zhang Q, Qiao Y K, Kong X Y, Si X S 2014 Acta Phys. Sin. 63 110505 (in Chinese) [张琪乔玉坤孔祥玉司小胜 2014 物理学报 63 110505]

    [9]

    Julier S J, Uhlman J K, Durrant-Whyte H F 2000 IEEE Transactions on Automatic Control 45 477

    [10]

    Julier S J, Uhlman J K 2004 Proceedings of the IEEE 92 401

    [11]

    Liu Y, Wang H, Hou C H 2013 IEEE Transactions on Signal Processing 61 4988

    [12]

    Ienkaran A, Simon H, Robert J E 2007 Proceedings of the IEEE 95 953

    [13]

    Arasaratnam I, Haykin S 2009 IEEE Transactions on Automatic Control 54 1254

    [14]

    ArasaratnamI, Haykin S, HurdTR 2010 IEEE Transactions on Signal Processing 58 4977

    [15]

    Wei X Q, Song S M 2013 Journa1 of Astronautics 34 193 (in Chinese) [魏喜庆, 宋申民 2013 宇航学报 34 193]

    [16]

    Liu X, Jiao S H, Si X C 2011 Journal of Xi An Jiao Tong University 45 137 (in Chinese) [刘学, 焦淑红, 司锡才 2011 西安交通大学学报 45 137]

    [17]

    Chang L B, Hu B Q, Li A, Qin F J 2013 IEEE Transactions on Automatic Control 58 252

  • [1]

    Lin C M, Hsueh C S 2013 IEEE Transactions on Instrumentation and Measurement 7 2058

    [2]

    Ho K C, Xu W W 2004 IEEE Transactions on Signal Processing 52 2453

    [3]

    Arie Yeredor, Eyal Angel 2011 IEEE Transactions On Signal Processing 59 1612

    [4]

    Wang G, Li Y M, Ansari N 2013 IEEE Transactions On Vehicular Technology 62 853

    [5]

    Luo L, Tian Z S, Chen J Y 2009 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition) 01 50 (in Chinese) [罗磊, 田增山, 陈俊亚 2009 重庆邮电大学学报(自然科学版) 01 50]

    [6]

    Gustafsson F, Hendeby G 2012 IEEE Transactions on Signal Processing 02 545

    [7]

    Ning X L, Wang H L, Zhang Q, Chen L H 2010 Acta Phys. Sin. 59 4426 (in Chinese) [宁小磊, 王宏力, 张琪, 陈连华 2010 物理学报 59 4426]

    [8]

    Zhang Q, Qiao Y K, Kong X Y, Si X S 2014 Acta Phys. Sin. 63 110505 (in Chinese) [张琪乔玉坤孔祥玉司小胜 2014 物理学报 63 110505]

    [9]

    Julier S J, Uhlman J K, Durrant-Whyte H F 2000 IEEE Transactions on Automatic Control 45 477

    [10]

    Julier S J, Uhlman J K 2004 Proceedings of the IEEE 92 401

    [11]

    Liu Y, Wang H, Hou C H 2013 IEEE Transactions on Signal Processing 61 4988

    [12]

    Ienkaran A, Simon H, Robert J E 2007 Proceedings of the IEEE 95 953

    [13]

    Arasaratnam I, Haykin S 2009 IEEE Transactions on Automatic Control 54 1254

    [14]

    ArasaratnamI, Haykin S, HurdTR 2010 IEEE Transactions on Signal Processing 58 4977

    [15]

    Wei X Q, Song S M 2013 Journa1 of Astronautics 34 193 (in Chinese) [魏喜庆, 宋申民 2013 宇航学报 34 193]

    [16]

    Liu X, Jiao S H, Si X C 2011 Journal of Xi An Jiao Tong University 45 137 (in Chinese) [刘学, 焦淑红, 司锡才 2011 西安交通大学学报 45 137]

    [17]

    Chang L B, Hu B Q, Li A, Qin F J 2013 IEEE Transactions on Automatic Control 58 252

  • [1] 张少军, 郭智, 成加皿, 王勇, 陈家华, 刘志. 高重频硬X射线自由电子激光脉冲到达时间诊断方法研究. 物理学报, 2023, 72(10): 105203. doi: 10.7498/aps.72.20222424
    [2] 朱栋, 徐晗, 周寅, 吴彬, 程冰, 王凯楠, 陈佩军, 高世腾, 翁堪兴, 王河林, 彭树萍, 乔中坤, 王肖隆, 林强. 基于扩展卡尔曼滤波算法的船载绝对重力测量数据处理. 物理学报, 2022, 71(13): 133702. doi: 10.7498/aps.71.20220071
    [3] 姜思仪, 付宁, 乔立岩, 彭喜元. 基于L型延迟阵列调制宽带转换器的信号载频和二维到达角联合估计. 物理学报, 2021, 70(8): 084303. doi: 10.7498/aps.70.20201312
    [4] 黄翔东, 刘明卓, 杨琳, 刘琨, 刘铁根. 单次空时域并行欠采样下的频率和到达角联合估计. 物理学报, 2017, 66(18): 188401. doi: 10.7498/aps.66.188401
    [5] 李兆铭, 杨文革, 丁丹, 廖育荣. 逼近积分点数下限的五阶容积卡尔曼滤波定轨算法. 物理学报, 2017, 66(15): 158401. doi: 10.7498/aps.66.158401
    [6] 孙梅, 周士弘. 大深度接收时深海直达波区的复声强及声线到达角估计. 物理学报, 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [7] 张文杰, 王世元, 冯亚丽, 冯久超. 基于Huber的高阶容积卡尔曼跟踪算法. 物理学报, 2016, 65(8): 088401. doi: 10.7498/aps.65.088401
    [8] 陈典兵, 朱明, 高文, 王慧利, 杨航. 基于残差矩阵估计的稀疏表示目标跟踪算法. 物理学报, 2016, 65(19): 194201. doi: 10.7498/aps.65.194201
    [9] 巴斌, 刘国春, 李韬, 林禹丞, 王瑜. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计. 物理学报, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    [10] 高文, 汤洋, 朱明. 目标跟踪中目标模型更新问题的半监督学习算法研究. 物理学报, 2015, 64(1): 014205. doi: 10.7498/aps.64.014205
    [11] 吴昊, 陈树新, 杨宾峰, 陈坤. 基于广义M估计的鲁棒容积卡尔曼滤波目标跟踪算法. 物理学报, 2015, 64(21): 218401. doi: 10.7498/aps.64.218401
    [12] 张琪, 乔玉坤, 孔祥玉, 司小胜. 随机摄动强跟踪粒子滤波算法. 物理学报, 2014, 63(11): 110505. doi: 10.7498/aps.63.110505
    [13] 高文, 汤洋, 朱明. 复杂背景下目标检测的级联分类器算法研究. 物理学报, 2014, 63(9): 094204. doi: 10.7498/aps.63.094204
    [14] 王保宪, 赵保军, 唐林波, 王水根, 吴京辉. 基于双向稀疏表示的鲁棒目标跟踪算法. 物理学报, 2014, 63(23): 234201. doi: 10.7498/aps.63.234201
    [15] 陈卫东, 刘要龙, 朱奇光, 陈颖. 基于改进雁群PSO算法的模糊自适应扩展卡尔曼滤波的SLAM算法. 物理学报, 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [16] 孙杰, 张晓娟, 方广有. 近地面三阵子天线估计电磁波到达角和极化参数. 物理学报, 2013, 62(19): 198402. doi: 10.7498/aps.62.198402
    [17] 盛峥, 陈加清, 徐如海. 利用粒子滤波从雷达回波实时跟踪反演大气波导. 物理学报, 2012, 61(6): 069301. doi: 10.7498/aps.61.069301
    [18] 盛峥. 扩展卡尔曼滤波和不敏卡尔曼滤波在实时雷达回波反演大气波导中的应用. 物理学报, 2011, 60(11): 119301. doi: 10.7498/aps.60.119301
    [19] 唐国宁, 罗晓曙, 孔令江. 用负反馈控制混沌Lorenz系统到达任意目标. 物理学报, 2000, 49(1): 30-32. doi: 10.7498/aps.49.30
    [20] 郭长志, 刘鹏. 相干光注入半导体激光器锁定过程的稳定性和到达混沌态的各种不稳定现象. 物理学报, 1990, 39(11): 1730-1738. doi: 10.7498/aps.39.1730
计量
  • 文章访问数:  5647
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-29
  • 修回日期:  2015-02-27
  • 刊出日期:  2015-08-05

/

返回文章
返回