搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于L型延迟阵列调制宽带转换器的信号载频和二维到达角联合估计

姜思仪 付宁 乔立岩 彭喜元

引用本文:
Citation:

基于L型延迟阵列调制宽带转换器的信号载频和二维到达角联合估计

姜思仪, 付宁, 乔立岩, 彭喜元

Joint estimation of carrier frequency and two-dimensional arrival angle based on L-shaped delay array modulation wideband converter

Jiang Si-Yi, Fu Ning, Qiao Li-Yan, Peng Xi-Yuan
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对现有的基于欠采样的频率和二维到达角的联合估计存在结构复杂问题, 本文提出了一种基于调制宽带转换器技术的L型延迟阵列接收结构. 利用延迟通道与未延迟通道采样值之间的相位差可直接估计载频, 进而计算二维到达角, 无需额外的参数配对操作, 避免了配对步骤引入的误差和复杂度的提升. 并结合所提L型延迟阵列结构的特点构造相关矩阵和三线性模型, 提出了两种参数估计算法, 一种基于旋转不变子空间算法, 计算量小, 适用于需要实时处理的场景; 另一种基于正则分解技术, 鲁棒性较好, 适用于信噪比较低的应用场景. 仿真实验表明该方法能较好地从欠奈奎斯特样本中估计目标的载频和二维到达角参数.
    As the signal spectrum in modern information technology becomes wider and wider, multi-band signals are distributed in a frequency range of tens of GHz. It covers a very wide spectrum but each RF signal has a very narrow band, and the distribution location of the band (or carrier frequency) is completely unknown. For the receiver, the single-band signals transmitted together constitute a multi-band signal. The sampling rate required to jointly estimate the space domain and frequency domain parameters of these signals is getting higher and higher. Modulated wideband converter system is an analog information conversion system for multiband analog signals, which is based on compressed sensing theory and greatly reduces the sampling rate. First, we propose an L-shaped delay array structure based on modulated wideband converter, which can estimate carrier frequency and two-dimensional arrival angles with a small number of samples. Secondly, two parameter-estimating algorithms are proposed based on the proposed structure. One is based on the estimating of signal parameter via rotational invariance technique (ESPRIT), which requires a small number of computations and is suitable for real-time processing application scenarios; the other algorithm is based on CANDECOMP/PARAFAC (CP) technique, which has better robustness and is suitable for applications with low signal-to-noise ratio. The samples of the delay channels can be directly used to estimate the carrier frequencies, and then the two-dimensional arrival angles are calculated. No additional pairing issue is required between the parameters. Then we give the time complexity analysis and space complexity analysis of the two methods. It can be found that the computational complexity and space storage occupation of the method based on ESPRIT are lower than those of the CP decomposition method. Then the conditions for unique parameter estimation are given. Finally, simulation experiments show that the proposed methods can estimate the carrier frequencies and two-dimensional arrival angles from sub-Nyquist samples. It can be found that the estimation method based on CP decomposition is more robust than the method based on ESPRIT, but at the cost of increased complexity of the algorithm.
      通信作者: 付宁, funinghit@163.com
    • 基金项目: 国家自然科学基金(批准号: 62071149, 61671177)资助的课题
      Corresponding author: Fu Ning, funinghit@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071149, 61671177)
    [1]

    Hassanien A, Vorobyov S A 2011 IEEE Trans. Signal Process. 59 2669Google Scholar

    [2]

    谢磊, 孙超, 刘雄厚, 蒋光禹 2016 物理学报 65 144303Google Scholar

    Xie L, Sun C, Liu X H, Jiang G Y 2016 Acta Phys. Sin. 65 144303Google Scholar

    [3]

    孙梅, 周士弘 2016 物理学报 65 164302Google Scholar

    Sun M, Zhou S H 2016 Acta Phys. Sin. 65 164302Google Scholar

    [4]

    Yang C, Xia B, Xie W, Huang K, Yao Y, Zhao Y 2018 IEEE Trans. Veh. Technol. 67 842Google Scholar

    [5]

    巴斌, 刘国春, 李韬, 林禹丞, 王瑜 2015 物理学报 64 078403Google Scholar

    Ba B, Liu G C, Li T, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403Google Scholar

    [6]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289Google Scholar

    [7]

    Candes E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21Google Scholar

    [8]

    康志伟, 吴春艳, 刘劲, 马辛, 桂明臻 2018 物理学报 67 099701Google Scholar

    Kang Z W, Wu C Y, Liu J, Ma X, Gui M Z 2018 Acta Phys. Sin. 67 099701Google Scholar

    [9]

    冷雪冬, 王大鸣, 巴斌, 王建辉 2017 物理学报 66 090703Google Scholar

    Leng X D, Wang D M, Bang B, Wang J H 2017 Acta Phys. Sin. 66 090703Google Scholar

    [10]

    Zhao Y, Hu Y H, Wang H 2012 IEEE Trans. Instrum. Meas. 61 579Google Scholar

    [11]

    Tropp J A, Wakin M B, Duarte M F, et al. 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing Toulouse, France, May 14–19, 2006 p873

    [12]

    Kirolos S, Laska J, Wakin M, et al. 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software, Richardson, Texas, USA, October 29–30, 2006 p71

    [13]

    Mishali M, Eldar Y C 2009 IEEE Trans. Signal Process. 57 993Google Scholar

    [14]

    Mishali M, Eldar Y C 2010 IEEE J. Sel. Topics Signal Process. 4 375Google Scholar

    [15]

    Mishali M, Eldar Y C, Dounaevsky O, Shoshan E 2009 IET Circ. Device. Syst. 5 8Google Scholar

    [16]

    黄翔东, 刘明卓, 杨琳, 刘琨, 刘铁根 2017 物理学报 66 188401Google Scholar

    Huang X D, Liu M Z, Yang L, Liu K, Liu T G 2017 Acta Phys. Sin. 66 188401Google Scholar

    [17]

    沈志博, 赵国庆, 董春曦, 黄龙 2014 航空学报 35 1357Google Scholar

    Shen Z B, Zhao G Q, Dong C X, Huang L 2014 Acta Aeronaut. Astronaut. Sin. 35 1357Google Scholar

    [18]

    Liu L, Gu J F, Wei P 2019 Signal Process. 154 87Google Scholar

    [19]

    Liu L, Wei P, Zhang H G 2017 IEEE International Conference on Computer and Communications, Chengdu, China, December 13–16, 2017 p843

    [20]

    Sidiropoulos N D, Giannakis G B, Bro R 2000 IEEE Trans. Signal Process. 48 810Google Scholar

    [21]

    Liu L, Wei P 2017 IET Radar Sonar Navigation 11 1798Google Scholar

    [22]

    Liu L, Wei P 2016 IEEE Signal Process. Lett. 25 1285Google Scholar

    [23]

    Stein S, Yair O, Cohen D, Eldar Y C 2015 IEEE International Workshop on Signal Processing Advances in Wireless Communications Stockholm, Sweden, June 28–July 1, 2015 p331

    [24]

    Stein S, Yair O, Cohen D, Eldar Y C 2017 IEEE Trans. Signal Process. 65 2645Google Scholar

    [25]

    Cui C, Wu W, Wang W Q 2017 IEEE Sensors J. 17 7470Google Scholar

    [26]

    Chen T, Liu L Z, Guo L M 2018 IET Radar, Sonar Navigation 12 873Google Scholar

    [27]

    陈玉龙, 黄登山 2012 计算机工程与应用 48 159Google Scholar

    Chen Y L, Huang D S 2012 Computer Engineering and Applications 48 159Google Scholar

    [28]

    Esmaeil R, Farzan S M, Mohammad S S 2018 IET Radar, Sonar Navigation 12 889Google Scholar

  • 图 1  L型阵列MWC结构图

    Fig. 1.  L shaped array MWC.

    图 2  x轴延迟通道结构图

    Fig. 2.  x-axis delay channel.

    图 3  接收信号频谱示意图

    Fig. 3.  Spectrum of received signal.

    图 4  不同方法在M = 3, Q = 160, 迭代次数I = 50时的复杂度对比图

    Fig. 4.  Multiplications comparison vs. N with M = 3, Q = 160, and I = 50.

    图 5  不同阵元个数下参数估计效果 (a) 载频估计效果; (b) 方位角估计效果; (c) 俯仰角估计效果

    Fig. 5.  Performance of estimated parameters under different N: (a) Performance of carrier frequency; (b) performance of azimuth angle; (c) performance of elevation angle.

    图 6  不同快拍数Q下参数估计效果 (a) 载频估计效果; (b) 方位角估计效果; (c) 俯仰角估计效果

    Fig. 6.  Performance of estimated parameters under different$Q$: (a) Performance of carrier frequency; (b) performance of azimuth angle; (c) performance of elevation angle.

    图 7  不同信噪比下参数估计效果 (a) 载频估计效果; (b) 方位角估计效果; (c) 俯仰角估计效果

    Fig. 7.  Performance of estimated parameters under different SNR: (a) Performance of carrier frequency; (b) performance of azimuth angle; (c) performance of elevation angle.

    表 1  不同方法的复杂度对比

    Table 1.  Complexity comparison of different methods.

    基于ESPRIT的方法基于CP分解的方法CS-OMP方法[28]
    时间复杂度$O({N^3} + {N^2}Q + {M^2})$$O(IM \cdot {N^3} + IN{M^2} + {N^2}Q)$$O(N{M^2}{P^2} + {N^3} + {N^2}(M + Q))$
    空间复杂度$O({N^2} + {M^2})$$O({N^3})$$O(N{P^2} + {N^2} + NM)$
    下载: 导出CSV
  • [1]

    Hassanien A, Vorobyov S A 2011 IEEE Trans. Signal Process. 59 2669Google Scholar

    [2]

    谢磊, 孙超, 刘雄厚, 蒋光禹 2016 物理学报 65 144303Google Scholar

    Xie L, Sun C, Liu X H, Jiang G Y 2016 Acta Phys. Sin. 65 144303Google Scholar

    [3]

    孙梅, 周士弘 2016 物理学报 65 164302Google Scholar

    Sun M, Zhou S H 2016 Acta Phys. Sin. 65 164302Google Scholar

    [4]

    Yang C, Xia B, Xie W, Huang K, Yao Y, Zhao Y 2018 IEEE Trans. Veh. Technol. 67 842Google Scholar

    [5]

    巴斌, 刘国春, 李韬, 林禹丞, 王瑜 2015 物理学报 64 078403Google Scholar

    Ba B, Liu G C, Li T, Lin Y C, Wang Y 2015 Acta Phys. Sin. 64 078403Google Scholar

    [6]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289Google Scholar

    [7]

    Candes E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21Google Scholar

    [8]

    康志伟, 吴春艳, 刘劲, 马辛, 桂明臻 2018 物理学报 67 099701Google Scholar

    Kang Z W, Wu C Y, Liu J, Ma X, Gui M Z 2018 Acta Phys. Sin. 67 099701Google Scholar

    [9]

    冷雪冬, 王大鸣, 巴斌, 王建辉 2017 物理学报 66 090703Google Scholar

    Leng X D, Wang D M, Bang B, Wang J H 2017 Acta Phys. Sin. 66 090703Google Scholar

    [10]

    Zhao Y, Hu Y H, Wang H 2012 IEEE Trans. Instrum. Meas. 61 579Google Scholar

    [11]

    Tropp J A, Wakin M B, Duarte M F, et al. 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing Toulouse, France, May 14–19, 2006 p873

    [12]

    Kirolos S, Laska J, Wakin M, et al. 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software, Richardson, Texas, USA, October 29–30, 2006 p71

    [13]

    Mishali M, Eldar Y C 2009 IEEE Trans. Signal Process. 57 993Google Scholar

    [14]

    Mishali M, Eldar Y C 2010 IEEE J. Sel. Topics Signal Process. 4 375Google Scholar

    [15]

    Mishali M, Eldar Y C, Dounaevsky O, Shoshan E 2009 IET Circ. Device. Syst. 5 8Google Scholar

    [16]

    黄翔东, 刘明卓, 杨琳, 刘琨, 刘铁根 2017 物理学报 66 188401Google Scholar

    Huang X D, Liu M Z, Yang L, Liu K, Liu T G 2017 Acta Phys. Sin. 66 188401Google Scholar

    [17]

    沈志博, 赵国庆, 董春曦, 黄龙 2014 航空学报 35 1357Google Scholar

    Shen Z B, Zhao G Q, Dong C X, Huang L 2014 Acta Aeronaut. Astronaut. Sin. 35 1357Google Scholar

    [18]

    Liu L, Gu J F, Wei P 2019 Signal Process. 154 87Google Scholar

    [19]

    Liu L, Wei P, Zhang H G 2017 IEEE International Conference on Computer and Communications, Chengdu, China, December 13–16, 2017 p843

    [20]

    Sidiropoulos N D, Giannakis G B, Bro R 2000 IEEE Trans. Signal Process. 48 810Google Scholar

    [21]

    Liu L, Wei P 2017 IET Radar Sonar Navigation 11 1798Google Scholar

    [22]

    Liu L, Wei P 2016 IEEE Signal Process. Lett. 25 1285Google Scholar

    [23]

    Stein S, Yair O, Cohen D, Eldar Y C 2015 IEEE International Workshop on Signal Processing Advances in Wireless Communications Stockholm, Sweden, June 28–July 1, 2015 p331

    [24]

    Stein S, Yair O, Cohen D, Eldar Y C 2017 IEEE Trans. Signal Process. 65 2645Google Scholar

    [25]

    Cui C, Wu W, Wang W Q 2017 IEEE Sensors J. 17 7470Google Scholar

    [26]

    Chen T, Liu L Z, Guo L M 2018 IET Radar, Sonar Navigation 12 873Google Scholar

    [27]

    陈玉龙, 黄登山 2012 计算机工程与应用 48 159Google Scholar

    Chen Y L, Huang D S 2012 Computer Engineering and Applications 48 159Google Scholar

    [28]

    Esmaeil R, Farzan S M, Mohammad S S 2018 IET Radar, Sonar Navigation 12 889Google Scholar

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性. 物理学报, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 物理学报, 2022, 71(5): 050101. doi: 10.7498/aps.71.20211504
    [3] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211504
    [4] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [5] 丁亚辉, 孙玉发, 朱金玉. 一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法. 物理学报, 2018, 67(10): 100201. doi: 10.7498/aps.67.20172543
    [6] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法. 物理学报, 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [7] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法. 物理学报, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [8] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [9] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [10] 李少东, 陈文峰, 杨军, 马晓岩. 低信噪比下的二维联合线性布雷格曼迭代快速超分辨成像算法. 物理学报, 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [11] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [12] 郭静波, 李佳文. 二进制信号的混沌压缩测量与重构. 物理学报, 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [13] 柴水荣, 郭立新. 基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究. 物理学报, 2015, 64(6): 060301. doi: 10.7498/aps.64.060301
    [14] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析. 物理学报, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [15] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [16] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [17] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [18] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [19] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [20] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
计量
  • 文章访问数:  4564
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-11
  • 修回日期:  2020-12-30
  • 上网日期:  2021-04-13
  • 刊出日期:  2021-04-20

/

返回文章
返回