搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知的差分关联成像方案研究

白旭 李永强 赵生妹

引用本文:
Citation:

基于压缩感知的差分关联成像方案研究

白旭, 李永强, 赵生妹

Differential compressive correlated imaging

Bai Xu, Li Yong-Qiang, Zhao Sheng-Mei
PDF
导出引用
  • 关联成像可提供一种运用常规手段难以获得清晰图像的方法, 能够解决一些常规成像技术不易解决的问题, 是近些年来量子光学领域的前沿和热点之一.本文提出一种基于压缩感知的差分关联成像方案(简称, 差分压缩关联成像方案), 将高斯分布的热光源强度分布作为压缩感知的测量矩阵, 差分物体信息作为被成像物体信息, 利用差分关联成像方案的高成像信噪比和压缩感知技术的低采样次数, 通过正交匹配追踪算法, 高质量地恢复出物体信息. 并以二灰度双缝、NUPT, 多灰度Lena图和Boats图为例, 数值仿真差分压缩关联成像过程; 同时将本方案350次测量的结果与差分关联成像方案30000次测量的结果进行对比, 研究结果表明针对不同的被成像物体(二灰度双缝、NUPT, 以及多灰度Lena图和Boats图), 10次成像的均方误差平均值分别降低了97.7%, 93.9%, 92.5%和71.4%; 与压缩鬼成像方案相比, 同样测量次数条件下均方误差值对于二灰度双缝和多灰度Lena图、Boats图等目标物 体分别有50.4%, 72.9%和66.8%的降低. 差分压缩关联成像方案极大地提高了成像信噪比, 降低了成像时间.
    Correlated imaging offers great potentiality, with respect to standard imaging, to obtain the imaging of objects located in optically harsh or noisy environment. It can solve the problems which are difficult to solve by conventional imaging techniques. Recently, it has become one of the hot topics in quantum optics. In this paper, we propose a new scheme of correlated imaging with differential correlated imaging based on compressive sensing, named differential compressive correlated imaging. The new scheme takes advantage of the high signal-to-noise ratio of the differential correlated imaging and low-imaging sampling frequency of the compressed sensing technique. In the scheme, we utilize the intensity of the thermal light, which is in line with the Gaussian distribution, as the measurement matrix of compressive sensing. We extract the differential object information as the image object information which could be recovered via orthogonal matching pursuit algorithm with high quality. By numerical simulations, we verify the proposed scheme. Here, we select the two gray-scale images, such as double-slit and NUPT, as well as the two multi-grayscale images (Lena and Boats) as the object. We take sampling 350 times in differential compressive correlated imaging for measurement. The numerical simulation results show that for the above image objects, the average mean-square error (MSE) over 10 times for the differential compressive correlated imaging scheme is reduced by 97.7%, 93.9%, 92.5% and 71.4% respectively with respect to that of the differential correlated imaging scheme. Moreover, compared with the compressive ghost imaging, the MSE value of the same double-slit in CDGI, as well as Lena and Boats under the same conditions, is reduced by 50.4%, 72.9% and 66.8% separately, which indicates that the compressive differential correlated imaging scheme can greatly improve the signal-to-noise ratio of the imaging, and significantly reduce the imaging time.
    • 基金项目: 国家自然科学基金(批准号:61271238)、江苏省高校自然科学研究重大项目(批准号:11KJA510002)、南京市留学人员科技活动项目(批准号:NJ210002)、南京邮电大学宽带无线通信与传感网技术教育部重点实验室开放研究课题(批准号:ZD035001NYKL01)、固体微结构物理国家重点实验室开放课题(批准号:M25020,M25022)、教育部高等学校博士学科点专项科研基金(批准号:20123223110003)、江苏高校优势学科建设工程资助项目和图像处理与图像通信江苏省重点实验室资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271238), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 11KJA510002), the Foundation for Nanjing Overseas Chinese Scholar, China (Grant No. NJ210002), the Open Fund of the Key Laboratory for Broadband Wireless Communication and Sensor Network Technology of Education Ministry of China, Nanjing University of Posts and Telecommunications (Grant No. ZD035001NYKL01), the Open Research Fund of National Laboratory of Solid State Microstructures, China (Grant Nos. M25020, M25022), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123223110003), the Priority Academic Program of Jiangsu Higher Education Institutions, China, and the Jiangsu Key Laboratory of Image Processing and Image Communication, China.
    [1]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [2]

    Klyshko D N 1988 Sov. Phys. JETP 67 1131

    [3]

    Gatti A, Brambilla E, Bache M, Lugiato L A 2004 Phys. Rev. Lett. 93 093602

    [4]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602

    [5]

    Gatti A, Bache M, Magatti D, Brambilla E, Ferri F, Lugiato L A 2006 J. Mod. Opt. 53 739

    [6]

    Gatti A, Bondani M, Lugiato L A, Paris M G A, Fabre C 2007 Phys. Rev. Lett. 98 039301

    [7]

    Shih Y H 2007 IEEE Sel. Top. Quan. Elec. 13 1016

    [8]

    Zhang E F, Dai H Y, Chen P X 2011 Chin. Phys. B 20 024201

    [9]

    Tian N, Guo Q C, Wang A L, Xu D L, Fu L 2011 Opt. Lett. 36 3302

    [10]

    Bai Y F, Yang W X, Yu X Q 2012 Chin. Phys. B 21 044206

    [11]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903

    [12]

    Cheng J, Han S S, Yan Y J 2006 Chin. Phys. 15 2002

    [13]

    Zhang M H, Wei Q, Shen X, Liu Y F, Liu H L, Cheng J, Han S S 2007 Phys. Rev. A 75 021803

    [14]

    Shen X, Bai Y F, Qin T, Han S S 2008 Chin. Phys. Lett. 25 3968

    [15]

    Karmakar S, Zhai Y H, Chen H, Shih Y H 2011 Quantum Electronics and Laser Science Conference Baltimore, USA May 1-6, 2011 p1

    [16]

    Chen X H, Liu Q, Luo K H, Wu L A 2009 Opt. Lett. 34 695

    [17]

    Zhang E F, Dai H Y 2011 Acta Phys. Sin. 60 064209 (in Chinese) [张二峰, 戴宏毅 2011 物理学报 60 064209]

    [18]

    Zhang P L, Gong W L, Shen X, Han S S 2010 Phys. Rev. A 82 033817

    [19]

    Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115

    [20]

    Liu Q, Luo K H, Chen X H, Wu L A 2010 Chin. Phys. B 19 094211

    [21]

    Brida G, Degiovanni I P, Fornaro G A, Genovese M, Meda A 2011 Int. J. Quant. Inf. 9 341

    [22]

    Li H G, Zhang Y T, Cao D Z, Xiong J, Wang K G 2008 Chin. Phys. B 17 4510

    [23]

    Xiong J, Li H G, Sun X J, Lin L F, Wang K G 2006 Chin. Phys. 15 2942

    [24]

    Zhang Y T, He C J, Li H G, Wang K G 2008 Chin. Phys. Lett. 25 2481

    [25]

    Lu M H, Shen X, Han S S 2011 Acta Opt. Sin. 31 0711002 (in Chinese) [陆明海, 沈夏, 韩申生 2011 光学学报 31 0711002]

    [26]

    Shechtman Y, Gazit S, Szameit A, Eldar Y C, Segev M 2010 Opt. Lett. 35 1148

    [27]

    Du J, Gong W L, Han S S 2012 Opt. Lett. 37 1067

    [28]

    Gong W L, Han S S 2012 Phys. Lett. A 376 1519

    [29]

    Wang H, Han S S 2012 Euro. Phys. Lett. 98 24003

    [30]

    Liu J Y, Zhu J B, Lu C, Huang S S 2010 Opt. Lett. 35 1206

    [31]

    Gong W L, Han S S 2010 Phys. Lett. A 374 1005

    [32]

    Gong W L, Han S S 2011 Opt. Lett. 36 394

    [33]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840

    [34]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603

    [35]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [36]

    Baraniuk R G 2007 IEEE Sig. Proc. Mag. 24 118

    [37]

    Candés E J, Wakin M B 2008 IEEE Sig. Proc. Mag. 25 21

    [38]

    Candés E J 2008 Comptes. Rendus Math. 346 589

    [39]

    Lustig M, Donoho D, Pauly J M 2007 Magn. Reson. Med. 58 1182

    [40]

    Bobin J, Starck J L, Ottensamer R 2008 IEEE Sel. Top. Sig. Proc. 2 718

    [41]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105

    [42]

    Duarte M F, Davenport M A, Takhar D, Laske J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Sig. Proc. Mag. 25 83

    [43]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110

    [44]

    Glouber R J 1963 Phys. Rev. 130 2529

    [45]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inform. Theory 53 4655

  • [1]

    Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429

    [2]

    Klyshko D N 1988 Sov. Phys. JETP 67 1131

    [3]

    Gatti A, Brambilla E, Bache M, Lugiato L A 2004 Phys. Rev. Lett. 93 093602

    [4]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L A 2005 Phys. Rev. Lett. 94 183602

    [5]

    Gatti A, Bache M, Magatti D, Brambilla E, Ferri F, Lugiato L A 2006 J. Mod. Opt. 53 739

    [6]

    Gatti A, Bondani M, Lugiato L A, Paris M G A, Fabre C 2007 Phys. Rev. Lett. 98 039301

    [7]

    Shih Y H 2007 IEEE Sel. Top. Quan. Elec. 13 1016

    [8]

    Zhang E F, Dai H Y, Chen P X 2011 Chin. Phys. B 20 024201

    [9]

    Tian N, Guo Q C, Wang A L, Xu D L, Fu L 2011 Opt. Lett. 36 3302

    [10]

    Bai Y F, Yang W X, Yu X Q 2012 Chin. Phys. B 21 044206

    [11]

    Cheng J, Han S S 2004 Phys. Rev. Lett. 92 093903

    [12]

    Cheng J, Han S S, Yan Y J 2006 Chin. Phys. 15 2002

    [13]

    Zhang M H, Wei Q, Shen X, Liu Y F, Liu H L, Cheng J, Han S S 2007 Phys. Rev. A 75 021803

    [14]

    Shen X, Bai Y F, Qin T, Han S S 2008 Chin. Phys. Lett. 25 3968

    [15]

    Karmakar S, Zhai Y H, Chen H, Shih Y H 2011 Quantum Electronics and Laser Science Conference Baltimore, USA May 1-6, 2011 p1

    [16]

    Chen X H, Liu Q, Luo K H, Wu L A 2009 Opt. Lett. 34 695

    [17]

    Zhang E F, Dai H Y 2011 Acta Phys. Sin. 60 064209 (in Chinese) [张二峰, 戴宏毅 2011 物理学报 60 064209]

    [18]

    Zhang P L, Gong W L, Shen X, Han S S 2010 Phys. Rev. A 82 033817

    [19]

    Meyers R E, Deacon K S, Shih Y H 2011 Appl. Phys. Lett. 98 111115

    [20]

    Liu Q, Luo K H, Chen X H, Wu L A 2010 Chin. Phys. B 19 094211

    [21]

    Brida G, Degiovanni I P, Fornaro G A, Genovese M, Meda A 2011 Int. J. Quant. Inf. 9 341

    [22]

    Li H G, Zhang Y T, Cao D Z, Xiong J, Wang K G 2008 Chin. Phys. B 17 4510

    [23]

    Xiong J, Li H G, Sun X J, Lin L F, Wang K G 2006 Chin. Phys. 15 2942

    [24]

    Zhang Y T, He C J, Li H G, Wang K G 2008 Chin. Phys. Lett. 25 2481

    [25]

    Lu M H, Shen X, Han S S 2011 Acta Opt. Sin. 31 0711002 (in Chinese) [陆明海, 沈夏, 韩申生 2011 光学学报 31 0711002]

    [26]

    Shechtman Y, Gazit S, Szameit A, Eldar Y C, Segev M 2010 Opt. Lett. 35 1148

    [27]

    Du J, Gong W L, Han S S 2012 Opt. Lett. 37 1067

    [28]

    Gong W L, Han S S 2012 Phys. Lett. A 376 1519

    [29]

    Wang H, Han S S 2012 Euro. Phys. Lett. 98 24003

    [30]

    Liu J Y, Zhu J B, Lu C, Huang S S 2010 Opt. Lett. 35 1206

    [31]

    Gong W L, Han S S 2010 Phys. Lett. A 374 1005

    [32]

    Gong W L, Han S S 2011 Opt. Lett. 36 394

    [33]

    Bromberg Y, Katz O, Silberberg Y 2009 Phys. Rev. A 79 053840

    [34]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603

    [35]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [36]

    Baraniuk R G 2007 IEEE Sig. Proc. Mag. 24 118

    [37]

    Candés E J, Wakin M B 2008 IEEE Sig. Proc. Mag. 25 21

    [38]

    Candés E J 2008 Comptes. Rendus Math. 346 589

    [39]

    Lustig M, Donoho D, Pauly J M 2007 Magn. Reson. Med. 58 1182

    [40]

    Bobin J, Starck J L, Ottensamer R 2008 IEEE Sel. Top. Sig. Proc. 2 718

    [41]

    Chan W L, Charan K, Takhar D, Kelly K F, Baraniuk R G, Mittleman D M 2008 Appl. Phys. Lett. 93 121105

    [42]

    Duarte M F, Davenport M A, Takhar D, Laske J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Sig. Proc. Mag. 25 83

    [43]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110

    [44]

    Glouber R J 1963 Phys. Rev. 130 2529

    [45]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inform. Theory 53 4655

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性. 物理学报, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 常宸, 孙帅, 杜隆坤, 聂镇武, 何林贵, 张翼, 陈鹏, 鲍可, 刘伟涛. 室外环境中的关联成像研究进展. 物理学报, 2023, 72(18): 183301. doi: 10.7498/aps.72.20231245
    [3] 孙艳玲, 曹瑞, 王子豪, 廖家莉, 刘其鑫, 冯俊波, 吴蓓蓓. 基于光学相控阵双周期光场的关联成像. 物理学报, 2021, 70(23): 234203. doi: 10.7498/aps.70.20211208
    [4] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [5] 李明飞, 阎璐, 杨然, 寇军, 刘院省. 日光强度涨落自关联消湍流成像. 物理学报, 2019, 68(9): 094204. doi: 10.7498/aps.68.20182181
    [6] 王盼盼, 姚旭日, 刘雪峰, 俞文凯, 邱棚, 翟光杰. 基于行扫描测量的运动目标压缩成像. 物理学报, 2017, 66(1): 014201. doi: 10.7498/aps.66.014201
    [7] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析. 物理学报, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [8] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [9] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [10] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] 郑小丰, 樊群超, 孙卫国, 范志祥, 张燚, 付佳, 李博. 用差分收敛法研究NaLi分子部分电子态的完全振动能谱. 物理学报, 2015, 64(20): 203301. doi: 10.7498/aps.64.203301
    [12] 仲亚军, 刘娇, 梁文强, 赵生妹. 针对多散斑图的差分压缩鬼成像方案研究. 物理学报, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [13] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [14] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [15] 张轶, 达新宇. 基于差分平稳时序的Ka波段雨衰预测. 物理学报, 2014, 63(6): 060203. doi: 10.7498/aps.63.060203
    [16] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [17] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [18] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [19] 姚银萍, 万仁刚, 薛玉郎, 张世伟, 张同意. 基于统计光学的正负热光非定域成像. 物理学报, 2013, 62(15): 154201. doi: 10.7498/aps.62.154201
    [20] 张二峰, 戴宏毅. 光的偏振对热光关联成像的影响. 物理学报, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
计量
  • 文章访问数:  6367
  • PDF下载量:  1637
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-04
  • 修回日期:  2012-10-04
  • 刊出日期:  2013-02-05

/

返回文章
返回