搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于渐进添边的准循环压缩感知时延估计算法

冷雪冬 王大鸣 巴斌 王建辉

引用本文:
Citation:

基于渐进添边的准循环压缩感知时延估计算法

冷雪冬, 王大鸣, 巴斌, 王建辉

A quasi-cyclic compressed sensing delay estimation algorithm based on progressive edge-growth

Leng Xue-Dong, Wang Da-Ming, Ba Bin, Wang Jian-Hui
PDF
导出引用
  • 针对时延估计问题中压缩感知类算法现有测量矩阵需要大量数据存储量的问题,提出了一种基于渐进添边的准循环压缩感知时延估计算法,实现了稀疏测量矩阵条件下接收信号时延的准确估计.该算法首先建立压缩感知与最大似然译码之间的理论桥梁,然后推导基于低密度奇偶校验码的测量矩阵的设计准则,引入渐进添边的思想构造具有准循环结构的稀疏测量矩阵,最后利用正交匹配追踪算法正确估计出时延.对本文算法的计算复杂度与测量矩阵的数据存储量进行理论分析.仿真结果表明,所提算法在测量矩阵维数相同的条件下正确重构概率高于高斯随机矩阵和随机奇偶校验测量矩阵,相比于随机奇偶校验矩阵,在数据存储量相等的条件下,以较少的计算复杂度代价得到了重构概率的较大提高.
    Time delay estimation (TDE) is a hot research topic in wireless location technology. Compressed sensing (CS) theory has been widely applied to image reconstruction and direction of arrival estimation since it was proposed in 2004. The sparse model can be constructed in time domain for estimating the time delay by using the CS theory. The measurement matrix plays a crucial role in the processing of signal reconstruction which is the core problem of CS theory. Therefore the research in the measurement matrix has becomes a hotspot in recent years. The existing measurement matrix is mainly divided into two categories, i.e., random measurement matrix and deterministic measurement matrix. The performance of random measurement matrix has bottlenecks. Firstly, because of the redundant measurement matrix data, the generation and storage of the random number put forward a high requirement for hardware. Secondly the random matrix can only satisfy the restricted isometry property in a statistical sense. The research of the deterministic measurement matrix is of great value under this background. The parity check matrix of low density parity check (LDPC) code has good performance in CS theory. However, the method of randomly selecting non-zero element position has a certain probability to generate a measurement matrix with a short loop structure during generating LDPC code measurement matrix. The robustness of the reconstruction performance decreases with the increase of iteration times. A novel quasi-cyclic CS algorithm based on progressive edge-growth is constructed to estimate the time delay. The purpose of this article is to deal with the need to store a large number of data in existing measurement matrix during time delay, by using the CS theory. The algorithm presented here can achieve TDE in a high precision. First, the theoretical bridge between CS and the maximum likelihood decoding is established. And the design criterion of measurement matrix based on the LDPC code is derived. The sparse measurement matrix with quasi-cyclic structure is constructed by introducing the idea of progressive edge-growth. Finally, the orthogonal matching pursuit algorithm is used to estimate the time delay. Furthermore, the computational complexity of the algorithm and the data storage of the measurement matrix are analyzed theoretically. Simulations show that the correct reconstruction probability of the proposed approach is higher than those of the Gauss random matrix and random LDPC matrix under the same dimension. Compared with the random LDPC matrix, the proposed method can improve performance at the expense of less complexity under the condition of the same data storage.
      通信作者: 冷雪冬, lengxuedong@outlook.com
    • 基金项目: 国家自然科学基金(批准号:61401513)资助的课题.
      Corresponding author: Leng Xue-Dong, lengxuedong@outlook.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61401513).
    [1]

    Zhang Q F, Huang J G, Xie Y Q 1995 Acta Acust. 20 211 (in Chinese) [张群飞, 黄建国, 谢一清 1995 声学学报 20 211]

    [2]

    Li J 2011 Electron. Meas. Technol. 34 73 (in Chinese) [李剑 2011 电子测量技术 34 73]

    [3]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [4]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 物理学报 62 174212]

    [5]

    Shen Z B, Dong C X, Huang L, Zhao G Q 2014 J. Electron. Inform. Technol. 36 2935 (in Chinese) [沈志博, 董春曦, 黄龙, 赵国庆 2014 电子与信息学报 36 2935]

    [6]

    Leng X D, Ba B, Lu Z Y, Wang D M 2016 Acta Phys. Sin. 65 210701 (in Chinese) [冷雪冬, 巴斌, 逯志宇, 王大鸣 2016 物理学报 65 210701]

    [7]

    Wang Q, Li J, Shen Y 2013 Acta Electron. Sin. 41 2041 (in Chinese) [王强, 李佳, 沈毅 2013 电子学报 41 2041]

    [8]

    Candes E J, Tao T 2005 IEEE Trans. Inform. Theory 51 4203

    [9]

    DeVore R A 2007 J. Complexity 23 918

    [10]

    Xia P F, Zhou S L, Giannakis G B 2005 IEEE Trans. Inform. Theory 51 1900

    [11]

    Dimakis A G, Smarandache R, Vontobel P O 2012 IEEE Trans. Inform. Theory 58 3093

    [12]

    Xia S T, Liu X J, Jiang Y 2015 IEEE Trans. Signal Process. 63 1017

    [13]

    Mohades A, Tadaion A A 2016 IET Signal Process 10 168

    [14]

    Elad M 2008 IEEE Trans. Signal Process. 55 5695

    [15]

    Hochba D S 1997 ACM Sigact News 28 40

    [16]

    Tillmann A M, Pfetsch M E 2014 IEEE Trans. Inform. Theory 60 1248

    [17]

    Gao Y, Peng J G, Yue S G, Zhao Y 2015 J. Function Spaces 205 579853

    [18]

    Sun J M 2016 Modern Radar 38 46 (in Chinese) [孙晶明 2016 现代雷达 38 46]

    [19]

    Dang K, Ma L H, Tian Y, Zhang H W, Ru L, Li X B 2015 J. Xidian Univ. 42 186 (in Chinese) [党骙, 马林华, 田雨, 张海威, 茹乐, 李小蓓 2015 西安电子科技大学学报(自然科学版) 42 186]

  • [1]

    Zhang Q F, Huang J G, Xie Y Q 1995 Acta Acust. 20 211 (in Chinese) [张群飞, 黄建国, 谢一清 1995 声学学报 20 211]

    [2]

    Li J 2011 Electron. Meas. Technol. 34 73 (in Chinese) [李剑 2011 电子测量技术 34 73]

    [3]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [4]

    Ning F L, He B J, Wei J 2013 Acta Phys. Sin. 62 174212 (in Chinese) [宁方立, 何碧静, 韦娟 2013 物理学报 62 174212]

    [5]

    Shen Z B, Dong C X, Huang L, Zhao G Q 2014 J. Electron. Inform. Technol. 36 2935 (in Chinese) [沈志博, 董春曦, 黄龙, 赵国庆 2014 电子与信息学报 36 2935]

    [6]

    Leng X D, Ba B, Lu Z Y, Wang D M 2016 Acta Phys. Sin. 65 210701 (in Chinese) [冷雪冬, 巴斌, 逯志宇, 王大鸣 2016 物理学报 65 210701]

    [7]

    Wang Q, Li J, Shen Y 2013 Acta Electron. Sin. 41 2041 (in Chinese) [王强, 李佳, 沈毅 2013 电子学报 41 2041]

    [8]

    Candes E J, Tao T 2005 IEEE Trans. Inform. Theory 51 4203

    [9]

    DeVore R A 2007 J. Complexity 23 918

    [10]

    Xia P F, Zhou S L, Giannakis G B 2005 IEEE Trans. Inform. Theory 51 1900

    [11]

    Dimakis A G, Smarandache R, Vontobel P O 2012 IEEE Trans. Inform. Theory 58 3093

    [12]

    Xia S T, Liu X J, Jiang Y 2015 IEEE Trans. Signal Process. 63 1017

    [13]

    Mohades A, Tadaion A A 2016 IET Signal Process 10 168

    [14]

    Elad M 2008 IEEE Trans. Signal Process. 55 5695

    [15]

    Hochba D S 1997 ACM Sigact News 28 40

    [16]

    Tillmann A M, Pfetsch M E 2014 IEEE Trans. Inform. Theory 60 1248

    [17]

    Gao Y, Peng J G, Yue S G, Zhao Y 2015 J. Function Spaces 205 579853

    [18]

    Sun J M 2016 Modern Radar 38 46 (in Chinese) [孙晶明 2016 现代雷达 38 46]

    [19]

    Dang K, Ma L H, Tian Y, Zhang H W, Ru L, Li X B 2015 J. Xidian Univ. 42 186 (in Chinese) [党骙, 马林华, 田雨, 张海威, 茹乐, 李小蓓 2015 西安电子科技大学学报(自然科学版) 42 186]

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性. 物理学报, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 物理学报, 2022, 71(5): 050101. doi: 10.7498/aps.71.20211504
    [3] 干红平, 张涛, 花燚, 舒君, 何立军. 基于双极性混沌序列的托普利兹块状感知矩阵. 物理学报, 2021, 70(3): 038402. doi: 10.7498/aps.70.20201475
    [4] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211504
    [5] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法. 物理学报, 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [6] 王盼盼, 姚旭日, 刘雪峰, 俞文凯, 邱棚, 翟光杰. 基于行扫描测量的运动目标压缩成像. 物理学报, 2017, 66(1): 014201. doi: 10.7498/aps.66.014201
    [7] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [8] 冷雪冬, 巴斌, 逯志宇, 王大鸣. 基于回溯筛选的稀疏重构时延估计算法. 物理学报, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701
    [9] 郭静波, 汪韧. 交替寻优生成元素幅值结合混沌随机相位构造循环测量矩阵. 物理学报, 2015, 64(13): 130702. doi: 10.7498/aps.64.130702
    [10] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] 郭静波, 李佳文. 二进制信号的混沌压缩测量与重构. 物理学报, 2015, 64(19): 198401. doi: 10.7498/aps.64.198401
    [12] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [13] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [14] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [15] 李晶, 赵拥军, 李冬海. 基于马尔科夫链蒙特卡罗的时延估计算法. 物理学报, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701
    [16] 郭静波, 汪韧. 基于混沌序列和RIPless理论的循环压缩测量矩阵的构造. 物理学报, 2014, 63(19): 198402. doi: 10.7498/aps.63.198402
    [17] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法. 物理学报, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [18] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [19] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [20] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
计量
  • 文章访问数:  6111
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-15
  • 修回日期:  2017-02-03
  • 刊出日期:  2017-05-05

/

返回文章
返回