搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

点光源哈特曼最优阈值估计方法研究

周睿 魏凌 李新阳 王彩霞 李梅 沈锋

引用本文:
Citation:

点光源哈特曼最优阈值估计方法研究

周睿, 魏凌, 李新阳, 王彩霞, 李梅, 沈锋

Shack-Hartmann optimum threshold estimation for the point source

Zhou Rui, Wei Ling, Li Xin-Yang, Wang Cai-Xia, Li Mei, Shen Feng
PDF
导出引用
  • 针对夏克-哈特曼波前传感器探测系统中噪声随时间及空间变化频率较快的特点,为了准确估计系统的最优阈值,根据高斯光斑与噪声的分布特性,提出一种以滑动窗口内像素均值及图像信号的局部梯度作为参数,构造关于噪声权重函数的方法,由此获得子孔径阈值的最优估计值,并详细分析了算法的基本原理和实现过程.以典型处理方法获取的阈值与理论最优阈值的误差作为评价标准,仿真和实验结果表明本文提出的阈值估计方法在不同信噪比、不同光斑大小的条件下,均能取得优于典型阈值处理方法获得的结果,且与理论最优阈值的误差小于10%.
    The Shack-Hartmann wavefront sensor (SHWFS) is an optical detection device based on the measurements of wavefront slopes. It is widely used in an adaptive optics system due to its simple structure and strong environment adaptability. The measuring accuracy of the SHWFS depends mainly on the accuracy of the spot image centroid in each sub-aperture. There are many centroid algorithms including the center of gravity algorithm, Gauss fitting algorithm, and correlation algorithm. As to the simplicity, robustness, high accuracy and stability, the center of gravity algorithm is more widely used. However, the accuracy of gravity algorithm is sensitive to the noise including discretization, aliasing, photon noise, readout noise, stray light, and direct current bias. To improve the accuracy of centroid, the output signals of SHWFS must be pre-processed to suppress the noise effect by using the method of thresholding in general. Many threshold methods have been presented to reduce the error of centroid and there theoretically exists an optimum threshold which causes the minimum error of centroid based on the characteristics of SHWFS and noise. However, it is difficult to separate the signals from the noises, and the optimum threshold cannot be estimated accurately in real time in the SHWFS systems. In this paper aiming at noises in SHWFS, which vary with time and space rapidly, a method based on the noise weighted function of the mean value of pixels and the local gradient direction of image signals in the moving windows is presented according to the characteristics of the Gaussian spot and noise distributions. Moreover, the theory and parameters determination of the method are analyzed. The method utilizes the probability that the pixels in the moving windows belong to the noise, and the probability is inversely proportional to the mean value of pixels and the local gradient direction of image signals, and so the monotonically reducing probability function of pixels is constructed. Finally, the standard deviation and mean value of noise can be obtained, and the estimation value of optimum threshold is equal to the mean value of noise plus three times the standard deviation of noise. To investigate the effects of the optimum threshold estimation with the different spot sizes, spot strengths and noise levels, the proposed algorithm is compared with traditional methods. The simulation and experimental results show that the proposed method could achieve higher accuracy, and the error between the threshold obtained by the method presented in this paper and theoretical optimum threshold is less than 10%, which is less than those from the traditional methods.
      通信作者: 周睿, zhourui@ioe.ac.cn
      Corresponding author: Zhou Rui, zhourui@ioe.ac.cn
    [1]

    Li J, Gong Y, Hu X R, Li C C 2014 Chin. J. Laser 41 0316002 (in Chinese) [李晶, 巩岩, 呼新荣, 李春才 2014 中国激光 41 0316002]

    [2]

    Baik S H, Park S K, Kim C J, Cha B 2007 Opt. Laser Technol. 39 262

    [3]

    Zhu Z Y, Li D Y, Hu L F, Mu Q Q, Yang C L, Cao Z L, Xuan L 2016 Chin. Phys. B 25 090702

    [4]

    Gao C Q, Gao M W, Weber H 2004 Chin. Phys. Lett. 21 2191

    [5]

    Wei L, Shi G H, Lu J, Yang J S, Li X Q, Zhang Y D 2013 J. Opt. 15 055702

    [6]

    Chen L H, Rao C H 2011 Acta Phys. Sin. 60 090701 (in Chinese) [陈林辉, 饶长辉 2011 物理学报 60 090701]

    [7]

    Li C H, Xian H, Jiang W H, Rao C H 2007 Acta Phys. Sin. 56 4289 (in Chinese) [李超宏, 鲜浩, 姜文汉, 饶长辉 2007 物理学报 56 4289]

    [8]

    Ares J, Arines J 2001 Opt. Lett. 26 1831

    [9]

    Ma X Y, Rao C H, Zheng H Q 2009 Opt. Express 17 8525

    [10]

    Liang C, Liao W H, Shen J X, Zhou Y 2009 Chin. J. Laser 36 430 (in Chinese) [梁春, 廖文和, 沈建新, 周宇 2009 中国激光 36 430]

    [11]

    Ren J F, Rao C H, Li M Q 2002 Opto-Electron. Eng. 29 1 (in Chinese) [任剑峰, 饶长辉, 李明全 2002 光电工程 29 1]

    [12]

    Thatiparthi C, Ommanib A, Burmanc R, Thapa D, Hutchings N, Lakshminarayanan V 2016 Proc. SPIE 9693 969321

    [13]

    Thomas S 2004 Proc. SPIE 5490 1238

    [14]

    Nightingale A M, Gordeyev S 2013 Opt. Eng. 52 071413

    [15]

    Shen F, Jiang W H 1999 High Power Laser and Particle Beams 11 27 (in Chinese) [沈锋, 姜文汉 1999 强激光与粒子束 11 27]

    [16]

    Li Y K, Zhang J Z, Zhang F Z 2014 Proc. SPIE 9242 92421V

  • [1]

    Li J, Gong Y, Hu X R, Li C C 2014 Chin. J. Laser 41 0316002 (in Chinese) [李晶, 巩岩, 呼新荣, 李春才 2014 中国激光 41 0316002]

    [2]

    Baik S H, Park S K, Kim C J, Cha B 2007 Opt. Laser Technol. 39 262

    [3]

    Zhu Z Y, Li D Y, Hu L F, Mu Q Q, Yang C L, Cao Z L, Xuan L 2016 Chin. Phys. B 25 090702

    [4]

    Gao C Q, Gao M W, Weber H 2004 Chin. Phys. Lett. 21 2191

    [5]

    Wei L, Shi G H, Lu J, Yang J S, Li X Q, Zhang Y D 2013 J. Opt. 15 055702

    [6]

    Chen L H, Rao C H 2011 Acta Phys. Sin. 60 090701 (in Chinese) [陈林辉, 饶长辉 2011 物理学报 60 090701]

    [7]

    Li C H, Xian H, Jiang W H, Rao C H 2007 Acta Phys. Sin. 56 4289 (in Chinese) [李超宏, 鲜浩, 姜文汉, 饶长辉 2007 物理学报 56 4289]

    [8]

    Ares J, Arines J 2001 Opt. Lett. 26 1831

    [9]

    Ma X Y, Rao C H, Zheng H Q 2009 Opt. Express 17 8525

    [10]

    Liang C, Liao W H, Shen J X, Zhou Y 2009 Chin. J. Laser 36 430 (in Chinese) [梁春, 廖文和, 沈建新, 周宇 2009 中国激光 36 430]

    [11]

    Ren J F, Rao C H, Li M Q 2002 Opto-Electron. Eng. 29 1 (in Chinese) [任剑峰, 饶长辉, 李明全 2002 光电工程 29 1]

    [12]

    Thatiparthi C, Ommanib A, Burmanc R, Thapa D, Hutchings N, Lakshminarayanan V 2016 Proc. SPIE 9693 969321

    [13]

    Thomas S 2004 Proc. SPIE 5490 1238

    [14]

    Nightingale A M, Gordeyev S 2013 Opt. Eng. 52 071413

    [15]

    Shen F, Jiang W H 1999 High Power Laser and Particle Beams 11 27 (in Chinese) [沈锋, 姜文汉 1999 强激光与粒子束 11 27]

    [16]

    Li Y K, Zhang J Z, Zhang F Z 2014 Proc. SPIE 9242 92421V

  • [1] 张广迪, 毛力, 徐红星. 平面波与高斯函数或样条函数复合基组. 物理学报, 2023, 72(18): 180302. doi: 10.7498/aps.72.20230872
    [2] 火元莲, 王丹凤, 龙小强, 连培君, 齐永锋. 非高斯冲激干扰下基于Softplus函数的核自适应滤波算法. 物理学报, 2021, 70(2): 028401. doi: 10.7498/aps.70.20200954
    [3] 谢文科, 刘俊圣, 费家乐, 周全, 夏辉, 陈欣, 张盼, 彭一鸣, 于涛. 权重函数对关联方程估计超声速混合层波前方差精度的影响. 物理学报, 2019, 68(9): 094202. doi: 10.7498/aps.68.20182269
    [4] 吴元庆, 王洋, 张延涛, 张宇峰, 刘春梅. 对比度阈值函数修正对于NVThermIP模型的影响. 物理学报, 2018, 67(21): 210702. doi: 10.7498/aps.67.20180493
    [5] 周继德, 常军, 牛亚军, 谢桂娟, 王希. 新型离轴反射变焦距光学系统的多视场检测方法. 物理学报, 2016, 65(8): 084208. doi: 10.7498/aps.65.084208
    [6] 程生毅, 陈善球, 董理治, 王帅, 杨平, 敖明武, 许冰. 变形镜高斯函数指数对迭代法自适应光学系统的影响. 物理学报, 2015, 64(9): 094207. doi: 10.7498/aps.64.094207
    [7] 杨波, 卜雄洙, 王新征, 于靖. 高斯噪声和弱正弦信号驱动的时间差型磁通门传感器. 物理学报, 2014, 63(20): 200702. doi: 10.7498/aps.63.200702
    [8] 韩丁, 严卫, 蔡丹, 杨汉乐. 基于最优估计理论、联合星载主被动传感器资料的液态云微物理特性反演研究. 物理学报, 2013, 62(14): 149201. doi: 10.7498/aps.62.149201
    [9] 曹小群. 基于高斯伪谱方法的混沌系统最优控制. 物理学报, 2013, 62(23): 230505. doi: 10.7498/aps.62.230505
    [10] 高国荣, 刘艳萍, 潘琼. 基于小波域可导阈值函数与自适应阈值的脉冲星信号消噪. 物理学报, 2012, 61(13): 139701. doi: 10.7498/aps.61.139701
    [11] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变. 物理学报, 2012, 61(6): 064103. doi: 10.7498/aps.61.064103
    [12] 王建新, 白福忠, 宁禹, 黄林海, 姜文汉. 无调制两面锥波前传感器的衍射理论分析和数值仿真. 物理学报, 2011, 60(2): 029501. doi: 10.7498/aps.60.029501
    [13] 陈林辉, 饶长辉. 点源信标相关哈特曼-夏克波前传感器光斑偏移测量误差分析. 物理学报, 2011, 60(9): 090701. doi: 10.7498/aps.60.090701
    [14] 白福忠, 饶长辉. 自参考干涉波前传感器中针孔直径对闭环自适应光学系统校正精度的影响. 物理学报, 2010, 59(11): 8280-8286. doi: 10.7498/aps.59.8280
    [15] 沈毅, 徐焕良. 加权网络权重自相似评判函数及其社团结构检测. 物理学报, 2010, 59(9): 6022-6028. doi: 10.7498/aps.59.6022
    [16] 白福忠, 饶长辉. 针孔直径对自参考干涉波前传感器测量精度的影响. 物理学报, 2010, 59(6): 4056-4064. doi: 10.7498/aps.59.4056
    [17] 张艳艳, 饶长辉, 李梅, 马晓燠. 基于电子倍增电荷耦合器件的哈特曼-夏克波前传感器质心探测误差分析. 物理学报, 2010, 59(8): 5904-5913. doi: 10.7498/aps.59.5904
    [18] 吴丹丹, 佘卫龙. 双轴晶体电光调制器的最优设计. 物理学报, 2005, 54(1): 134-138. doi: 10.7498/aps.54.134
    [19] 黄 菁, 梁瑞生, 司徒达, 张坤明, 唐志列. 高斯光束共焦扫描激光显微镜的光学传递函数. 物理学报, 1998, 47(8): 1289-1295. doi: 10.7498/aps.47.1289
    [20] 朱箭, 张光寅, 陈晓波. Ho激光器阈值的理论分析. 物理学报, 1996, 45(8): 1337-1343. doi: 10.7498/aps.45.1337
计量
  • 文章访问数:  4864
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-08
  • 修回日期:  2017-02-04
  • 刊出日期:  2017-05-05

/

返回文章
返回