搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面波与高斯函数或样条函数复合基组

张广迪 毛力 徐红星

引用本文:
Citation:

平面波与高斯函数或样条函数复合基组

张广迪, 毛力, 徐红星

Composite basis set of plane wave and Gaussian function or spline function

Zhang Guang-Di, Mao Li, Xu Hong-Xing
PDF
HTML
导出引用
  • 通过将平面波与高斯函数或者样条函数结合到一起, 本文构建了一种新的复合基组. 利用格拉姆-施密特正交化方法或者Löwdin正交化方法, 对复合基组进行正交归一化. 通过选择平面波函数中波矢的绝对值, 选择性地求解某个能量区间内的本征态, 将大型哈密顿矩阵的计算转变为多个小型矩阵的计算, 以及通过减少电子势能平缓部分展开基矢数目, 极大地加快了计算速度. 以一维有限深势阱为例, 通过与严格计算方法的对比, 验证了本文复合基组能够在加速计算的情况下保证求解精度. 同时, 本文还研究了不同的参数设置对计算精度的影响, 包括复合基矢的疏密度、高斯函数的宽值, 以及样条函数不同区域占函数总宽度的比值等参数. 最后该复合基组可以直接应用到对大尺寸纳米金属结构的等离激元数值计算当中.
    By combining plane waves with Gaussian or spline functions, a new composite basis set is constructed in this work. As a non local basis vector, the plane wave basis group needs a large number of plane waves to expand all parts of the physical space, including the intermediate regions that are not important to our problems. Our basis set uses the local characteristics of Gaussian function or spline function at the same time, and controls the energy interval by selecting different plane wave vectors, in order to realize the partition solution of Hamiltonian matrix. Orthogonal normalization of composite basis sets is performed by using Gram-Schmidt’s orthogonalization method or Löwdin’s orthogonalization method. Considering the completeness of plane wave vector, a certain value of positive and negative should be selected at the same time. Here, by changing the absolute value of wave vector, we can select the eigenvalue interval to be solved. The plane wave with a specific wave vector value is equivalent to a trial solution in the region with gentle potential energy. The algorithm automatically combines local Gaussian or spline functions to match the difference in wave vector value between the trial solution and the strict solution. By selecting the absolute value of the wave vector in the plane wave function, the calculation of large Hamiltonian matrices turns into the calculation of multiple small matrices, together with reducing the basis numbers in the region where the electron potential changes smoothly, therefore, we can significantly reduce the computational time. As an example, we apply this basis set to a one-dimensional finite depth potential well. It can be found that our method significantly reduce the number of basis vectors used to expand the wave function while maintaining a suitable degree of computational accuracy. We also study the influence of different parameters on calculation accuracy. Finally, the above calculation method can be directly applied to the density functional theory (DFT) calculation of plasmons in silver nanoplates or other metal nanostructures. Given a reasonable tentative initial state, the ground state electron density distribution of the system can be solved by self-consistent solution through using DFT theory, and then the electromagnetic field distribution and optical properties of the system can be solved by using time-dependent density functional theory.
      通信作者: 毛力, maoli@whu.edu.cn ; 徐红星, hxxu@whu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0211303)和国家自然科学基金(批准号: 91850207)资助的课题.
      Corresponding author: Mao Li, maoli@whu.edu.cn ; Xu Hong-Xing, hxxu@whu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFA0211303) and the National Natural Science Foundation of China (Grant No. 91850207).
    [1]

    Wang L W, Kang Y F, Liu X H, Zhang S M, Huang W P, Wang S R 2012 Sensor. Actuat. B-Chem. 162 237Google Scholar

    [2]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425Google Scholar

    [3]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578Google Scholar

    [4]

    Jiang N N, Zhuo X L, Wang J F 2018 Chem. Rev. 118 3054Google Scholar

    [5]

    Baumberg J J, Aizpurua J, Mikkelsen M H, Smith D R 2019 Nat. Mater. 18 668Google Scholar

    [6]

    Benz F, Schmidt M K, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, De Nijs B, Esteban R 2016 Science 354 726Google Scholar

    [7]

    Hao E, Schatz G C 2004 J. Chem. Phys. 120 357Google Scholar

    [8]

    Ghosh S K, Pal T 2007 Chem. Rev. 107 4797Google Scholar

    [9]

    Romero I, Aizpurua J, Bryant G W, De Abajo F J G 2006 Opt. Express. 14 9988Google Scholar

    [10]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [11]

    Chen H J, Shao L, Li Q, Wang J F 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [12]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [13]

    Michaels A M, Jiang J, Brus L 2000 J. Phys. Chem. B 104 11965Google Scholar

    [14]

    Pines D 1953 Phys. Rev. 92 626Google Scholar

    [15]

    Hopfield J 1958 Phys. Rev. 112 1555Google Scholar

    [16]

    Elson J, Ritchie R 1971 Phys. Rev. B 4 4129Google Scholar

    [17]

    Waks E, Sridharan D 2010 Phys. Rev. A 82 043845Google Scholar

    [18]

    Li Z P, Xu H X 2007 J. Quant. Spectrosc. Ra. 103 394Google Scholar

    [19]

    Flatau P J, Fuller K A, Mackowski D W 1993 Appl. Opt. 32 3302Google Scholar

    [20]

    Futamata M, Maruyama Y, Ishikawa M 2003 J. Phys. Chem. B 107 7607Google Scholar

    [21]

    Mao L, Li Z P, Wu B, Xu H X 2009 Appl. Phys. Lett. 94 243102Google Scholar

    [22]

    Zuloaga J, Prodan E, Nordlander P 2009 Nano. Lett. 9 887Google Scholar

    [23]

    Parr R G 1983 Annu. Rev. Phys. Chem. 34 631Google Scholar

    [24]

    Engel E, Dreizler R M 2011 Density Functional Theory (Berlin: Springer) pp11–55

    [25]

    Burke K 2012 J. Chem. Phys. 136 150901Google Scholar

    [26]

    Argaman N, Makov G 2000 Am. J. Phys. 68 69Google Scholar

    [27]

    Runge E, Gross E K 1984 Phys. Rev. Lett. 52 997Google Scholar

    [28]

    Marques M A, Gross E K 2004 Annu. Rev. Phys. Chem. 55 427Google Scholar

    [29]

    Perdew J P, Schmidt K 2001 AIP Conf. Proc. 577 1Google Scholar

    [30]

    Perdew J P, Ruzsinszky A, Tao J, Staroverov V N, Scuseria G E, Csonka G I 2005 J. Chem. Phys. 123 062201Google Scholar

    [31]

    Meng L Y, Yam C Y, Koo S K, Chen Q, Wong N, Chen G H 2012 J. Chem. Theory. Comput. 8 1190Google Scholar

    [32]

    Yam C Y, Meng L Y, Chen G H, Chen Q, Wong N 2011 Phys. Chem. Chem. Phys. 13 14365Google Scholar

    [33]

    何禹, 王一波 2017 物理化学学报 33 1149Google Scholar

    He Y, Wang Y B 2017 Acta Phys. Chim. Sin. 33 1149Google Scholar

    [34]

    段宜武, 吴为平, 鲍诚光, 安伟科 1991 高能物理与核物理 15 42

    Duan Y W, Wu W P, Bao C G, An W K 1991 Phys. Ener. Fort. Phys. Nucl. 15 42

    [35]

    Hu H P, Wang M, Ding Z Y, Ji G F 2016 Acta Phys. Chim. Sin. 32 2059Google Scholar

    [36]

    Wachters A J H 1970 J. Chem. Phys. 52 1033Google Scholar

    [37]

    Rice J R 1966 Math. Comput. 20 325Google Scholar

    [38]

    Björck Å 1994 Linear. Algebra. Appl. 197 297

    [39]

    Aiken J G, Erdos J A, Goldstein J A 1980 Int. J. Quantum. Chem. 18 1101Google Scholar

    [40]

    曾谨言 2007 高等量子力学(第一卷) (北京: 科学出版社) 第72页

    Zeng J Y 2007 Advanced Quantum Mechanics (Vol. 1) (Beijing: Science Press) p72

    [41]

    Mao L, Wu B 2011 Surf. Sci. 605 1230Google Scholar

  • 图 1  用来复合的高斯函数与样条函数 (a)高斯函数; (b)样条函数

    Fig. 1.  Gaussian wave function and spline function for composition: (a) Gaussian wave function; (b) spline function.

    图 2  仅使用少量基矢时, 计算值与理论值的相对误差(x轴为不同的本征态, y轴为计算值和理论值之间的相对误差, 后文相同)

    Fig. 2.  Relative error between calculated and theoretical values when only a small number of base vectors are used (x-axis, different eigenstates; y-axis, relative error between calculated and theoretical values; the following image is the same as the Fig. 2).

    图 3  不同的疏密度比率对精度的影响

    Fig. 3.  Effect of different degree of closing on precision.

    图 4  不同的基矢宽度对精度的影响

    Fig. 4.  Effect of different basis sets width on precision.

    图 5  不同的疏密度比率对精度的影响

    Fig. 5.  Effect of different degree of closing on precision.

    图 6  耦合部分与函数宽度的比值对精度的影响

    Fig. 6.  Effect of the ratio of coupling part to function width on precision.

  • [1]

    Wang L W, Kang Y F, Liu X H, Zhang S M, Huang W P, Wang S R 2012 Sensor. Actuat. B-Chem. 162 237Google Scholar

    [2]

    Huynh W U, Dittmer J J, Alivisatos A P 2002 Science 295 2425Google Scholar

    [3]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578Google Scholar

    [4]

    Jiang N N, Zhuo X L, Wang J F 2018 Chem. Rev. 118 3054Google Scholar

    [5]

    Baumberg J J, Aizpurua J, Mikkelsen M H, Smith D R 2019 Nat. Mater. 18 668Google Scholar

    [6]

    Benz F, Schmidt M K, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, De Nijs B, Esteban R 2016 Science 354 726Google Scholar

    [7]

    Hao E, Schatz G C 2004 J. Chem. Phys. 120 357Google Scholar

    [8]

    Ghosh S K, Pal T 2007 Chem. Rev. 107 4797Google Scholar

    [9]

    Romero I, Aizpurua J, Bryant G W, De Abajo F J G 2006 Opt. Express. 14 9988Google Scholar

    [10]

    Schuller J A, Barnard E S, Cai W, Jun Y C, White J S, Brongersma M L 2010 Nat. Mater. 9 193Google Scholar

    [11]

    Chen H J, Shao L, Li Q, Wang J F 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [12]

    Xu H X, Bjerneld E J, Käll M, Börjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [13]

    Michaels A M, Jiang J, Brus L 2000 J. Phys. Chem. B 104 11965Google Scholar

    [14]

    Pines D 1953 Phys. Rev. 92 626Google Scholar

    [15]

    Hopfield J 1958 Phys. Rev. 112 1555Google Scholar

    [16]

    Elson J, Ritchie R 1971 Phys. Rev. B 4 4129Google Scholar

    [17]

    Waks E, Sridharan D 2010 Phys. Rev. A 82 043845Google Scholar

    [18]

    Li Z P, Xu H X 2007 J. Quant. Spectrosc. Ra. 103 394Google Scholar

    [19]

    Flatau P J, Fuller K A, Mackowski D W 1993 Appl. Opt. 32 3302Google Scholar

    [20]

    Futamata M, Maruyama Y, Ishikawa M 2003 J. Phys. Chem. B 107 7607Google Scholar

    [21]

    Mao L, Li Z P, Wu B, Xu H X 2009 Appl. Phys. Lett. 94 243102Google Scholar

    [22]

    Zuloaga J, Prodan E, Nordlander P 2009 Nano. Lett. 9 887Google Scholar

    [23]

    Parr R G 1983 Annu. Rev. Phys. Chem. 34 631Google Scholar

    [24]

    Engel E, Dreizler R M 2011 Density Functional Theory (Berlin: Springer) pp11–55

    [25]

    Burke K 2012 J. Chem. Phys. 136 150901Google Scholar

    [26]

    Argaman N, Makov G 2000 Am. J. Phys. 68 69Google Scholar

    [27]

    Runge E, Gross E K 1984 Phys. Rev. Lett. 52 997Google Scholar

    [28]

    Marques M A, Gross E K 2004 Annu. Rev. Phys. Chem. 55 427Google Scholar

    [29]

    Perdew J P, Schmidt K 2001 AIP Conf. Proc. 577 1Google Scholar

    [30]

    Perdew J P, Ruzsinszky A, Tao J, Staroverov V N, Scuseria G E, Csonka G I 2005 J. Chem. Phys. 123 062201Google Scholar

    [31]

    Meng L Y, Yam C Y, Koo S K, Chen Q, Wong N, Chen G H 2012 J. Chem. Theory. Comput. 8 1190Google Scholar

    [32]

    Yam C Y, Meng L Y, Chen G H, Chen Q, Wong N 2011 Phys. Chem. Chem. Phys. 13 14365Google Scholar

    [33]

    何禹, 王一波 2017 物理化学学报 33 1149Google Scholar

    He Y, Wang Y B 2017 Acta Phys. Chim. Sin. 33 1149Google Scholar

    [34]

    段宜武, 吴为平, 鲍诚光, 安伟科 1991 高能物理与核物理 15 42

    Duan Y W, Wu W P, Bao C G, An W K 1991 Phys. Ener. Fort. Phys. Nucl. 15 42

    [35]

    Hu H P, Wang M, Ding Z Y, Ji G F 2016 Acta Phys. Chim. Sin. 32 2059Google Scholar

    [36]

    Wachters A J H 1970 J. Chem. Phys. 52 1033Google Scholar

    [37]

    Rice J R 1966 Math. Comput. 20 325Google Scholar

    [38]

    Björck Å 1994 Linear. Algebra. Appl. 197 297

    [39]

    Aiken J G, Erdos J A, Goldstein J A 1980 Int. J. Quantum. Chem. 18 1101Google Scholar

    [40]

    曾谨言 2007 高等量子力学(第一卷) (北京: 科学出版社) 第72页

    Zeng J Y 2007 Advanced Quantum Mechanics (Vol. 1) (Beijing: Science Press) p72

    [41]

    Mao L, Wu B 2011 Surf. Sci. 605 1230Google Scholar

  • [1] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [2] 张振清, 路海, 王少华, 魏泽勇, 江海涛, 李云辉. 平面金属等离激元美特材料对光学Tamm态及相关激射行为的增强作用. 物理学报, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [3] 雷小丽, 王大威, 梁士雄, 吴朝新. 半导体量子阱中激子波函数及其 Fourier系数的计算和应用. 物理学报, 2012, 61(5): 057803. doi: 10.7498/aps.61.057803
    [4] 熊涛, 张杰, 陈祥磊, 叶邦角, 杜淮江, 翁惠民. 单晶固体中正电子波函数的计算. 物理学报, 2010, 59(10): 7374-7377. doi: 10.7498/aps.59.7374
    [5] 郑曙东, 李博文, 李冀光, 董晨钟, 袁文渊. 原子核的有限体积效应对高离化态离子能级和波函数的影响. 物理学报, 2009, 58(3): 1556-1562. doi: 10.7498/aps.58.1556
    [6] 何永林, 周效信, 李小勇. 用B-样条函数研究静电场中锂原子里德伯态的性质. 物理学报, 2008, 57(1): 116-123. doi: 10.7498/aps.57.116
    [7] 周世平, 徐克西, 牛金海, 瞿 海. 混合配对态波函数方程的解. 物理学报, 1999, 48(2): 342-351. doi: 10.7498/aps.48.342
    [8] 李晓梅, 陈健华. 等价电子耦合波函数的构造和矩阵元计算. 物理学报, 1999, 48(9): 1593-1600. doi: 10.7498/aps.48.1593
    [9] 凌瑞良, 冯金福. 阻尼谐振子的严格波函数. 物理学报, 1998, 47(12): 1952-1956. doi: 10.7498/aps.47.1952
    [10] 刘磊, 李家明. 原子体系近核区电子波函数振幅(Ⅰ)——离化态原子高能光电离过程. 物理学报, 1991, 40(12): 1922-1928. doi: 10.7498/aps.40.1922
    [11] 刘磊, 李家明. 原子体系近核区电子波函数振幅(Ⅱ)——离化态原子近核区电子波函数振幅. 物理学报, 1991, 40(12): 1929-1933. doi: 10.7498/aps.40.1929
    [12] 刘全慧, 王发伯. 平面与空间转子体系的双波函数研究. 物理学报, 1991, 40(10): 1562-1566. doi: 10.7498/aps.40.1562
    [13] 张思远. fN组态波函数的Young盘形式. 物理学报, 1984, 33(1): 86-92. doi: 10.7498/aps.33.86
    [14] 汪洁英, 曾建中. 具有不可共度势的掺杂一维体系中波函数的计算. 物理学报, 1984, 33(10): 1393-1400. doi: 10.7498/aps.33.1393
    [15] 孙鑫, 李铁城, 吴家玮. 金属表面的相关波函数理论(Ⅱ)——实际计算. 物理学报, 1982, 31(11): 1474-1482. doi: 10.7498/aps.31.1474
    [16] 芶清泉, 黄树勋. 原子的解析波函数——Ⅱ.第二周期元素的正常态原子与离子的解析波函数与能量积分的计算. 物理学报, 1965, 21(6): 1293-1303. doi: 10.7498/aps.21.1293
    [17] 孙洪洲. 对SU3波函数的讨论. 物理学报, 1964, 20(6): 483-500. doi: 10.7498/aps.20.483
    [18] 韩文述, 邵耀良, 阮英超. 奇A核非轴对称转动波函数与能级的计算. 物理学报, 1963, 19(2): 99-102. doi: 10.7498/aps.19.99
    [19] 芶清泉, 黄樹勋. 原子的解析波函数. 物理学报, 1962, 18(2): 63-71. doi: 10.7498/aps.18.63
    [20] 芶清泉, 张开义. 應用变分波函数计算原子和离子的抗磁性的磁化率. 物理学报, 1953, 9(2): 93-109. doi: 10.7498/aps.9.93
计量
  • 文章访问数:  4268
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-26
  • 修回日期:  2023-06-28
  • 上网日期:  2023-07-22
  • 刊出日期:  2023-09-20

/

返回文章
返回