搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变形镜高斯函数指数对迭代法自适应光学系统的影响

程生毅 陈善球 董理治 王帅 杨平 敖明武 许冰

引用本文:
Citation:

变形镜高斯函数指数对迭代法自适应光学系统的影响

程生毅, 陈善球, 董理治, 王帅, 杨平, 敖明武, 许冰

Influence of Gaussian function index of deformable mirror on iterative algorithm adaptive optical system

Cheng Sheng-Yi, Chen Shan-Qiu, Dong Li-Zhi, Wang Shuai, Yang Ping, Ao Ming-Wu, Xu Bing
PDF
导出引用
  • 基于613单元自适应光学系统, 描述了迭代矩阵和斜率响应矩阵的特性. 在变形镜驱动器间距和交连值不变的情况下, 研究了变形镜高斯函数指数对迭代矩阵和斜率响应矩阵稀疏度的影响, 对自适应光学系统稳定性和校正能力的影响. 研究表明, 迭代矩阵和斜率响应矩阵的稀疏度随着变形镜高斯函数指数的增大而减小. 高斯函数指数过大或者过小都会影响自适应光学系统的稳定性和校正能力. 最后, 综合迭代矩阵和斜率响应矩阵的稀疏度、自适应光学系统的稳定性和校正能力, 给出了合理的变形镜高斯函数指数的取值范围.
    Among all kinds of wavefront reconstruction algorithms in adaptive optical systems, the standard and mostly used algorithm is the direct gradient wavefront reconstruction algorithm. As the number of sub-apertures in Shack-Hartmann wavefront sensor and the actuators for deformable mirror increases, the reconstruction matrix in direct gradient wavefront reconstruction algorithm takes too much space and the number of multiplication in the algorithm increases sharply. So, the iterative algorithm is adopted in wavefront reconstruction for the high-resolution adaptive optical system. The number of multiplication and the required space of the iterative algorithm are directly related to the sparseness of both iterative matrix and slope response matrix. In an adaptive optical system, the sparseness of these two matrixes is connected with the system parameters. Therefore, it is necessary to study how to choose the proper parameters for an adaptive optical system when it uses iterative wavefront reconstruction algorithm. In this paper, the sparseness of slope response matrix and iterative matrix are analyzed based on a 613-actuator adaptive optical system. The influence of the Gaussian function index of deformable mirror on the sparsenesses of slope response matrix, iterative matrix, stability and correction qualities of the adaptive optical system are also studied under the condition of constant actuator spacing and coupling coefficient. A larger Gaussian function index results in a lower sparseness of the slope response matrix and the iterative matrix. Too large or too small a Gaussian function index will degrade the stability and the correction quality of an adaptive optical system. Finally, the optimal range of the Gaussian function index is provided by balancing the sparseness of slope response matrix, the correction quality, and the stability of the adaptive optical system.
    • 基金项目: 国家重大科研装备研制项目(批准号: ZDYZ2013-2)、国家自然科学基金(批准号: 11173008)和四川省杰出青年学术技术带头人资助计划(批准号: 2012JQ0012)资助的课题.
    • Funds: Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Province Outstanding Youth Academic Technology Leaders Program, China (Grant NO. 2012JQ0012).
    [1]

    Jiang W H, Zhang Y D, Rao C H, Ling N, Guan C L, Li M, Yang Z P, Shi G H 2011 Acta Optica Sinaca 31 9 (in Chinese) [姜文汉, 张雨东, 饶长辉, 凌宁, 官春林, 李梅, 杨泽平, 史国华 2011 光学学报 31 9]

    [2]

    Jiang W H 2006 Chinese Journal of Nature 28 1 (in Chinese) [姜文汉 2006 中国自然杂志 28 1]

    [3]

    Zhang L Q, Gu N T, Rao C H 2013 Acta. Phys. Sin. 62 169501 (in Chinese) [张兰强, 顾乃庭, 饶长辉 2013 物理学报 62 169501]

    [4]

    Ren Z J, Liang X Y, Liu M B, Xia C Q, Lu X M, Li R X, Xu Z Z 2009 Chin. Phys. Lett. 26 124203

    [5]

    Yu L H, Liang X Y, Ren Z J, Wang L, Xu Y, Lu X M, Yu G T 2012 Chin. Phys. B 21 014201

    [6]

    Li X Y, Jiang W H 2003 Acta Optica Sinaca 23 6 (in Chinese) [李新阳, 姜文汉 2003 光学学报 23 6]

    [7]

    Jiang W H, Li H G 1990 Proc. SPIE The Hague, Netherlands, March 01, 1990 p82

    [8]

    Feng L, Fedrigo E, Bechet C 2012 Applied Optics 51 3564

    [9]

    Antonin H B 2010 Proc. SPIE San Diego, CA, August 02, 2009 p1

    [10]

    Luc G, Curtis R, Vogel, Brent L 2002 J. Opt. Soc. Am. A 19 1817

    [11]

    Eric T, Michel T 2010 J. Opt. Soc. Am. A 27 1046

    [12]

    Cheng S Y, Chen S Q, Dong L Z, Liu W J, Wang S, Yang P, Ao M W, Xu B 2014 Acta Phys. Sin. 63 074206 (in Chinese) [程生毅, 陈善球, 董理治, 刘文劲, 王帅, 杨平, 敖明武, 许冰 2014 物理学报 63 074206]

    [13]

    Zhu Y G 2010 Matrix Analysis and Calculation (Beijing: National Defense Industry Press) pp160-183 (in Chinese) [朱元国 2010 矩阵分析与计算(北京: 国防工业出版社)第160-183页]

    [14]

    Curtis R V 2004 Proc. of SPIE Bellingham WA, June 21, 2004 p1327

    [15]

    John M C, John G 2004 Science, The International Journal of High Performance Computing Applications 18 225

    [16]

    Dong L Z, Yang P, Xu B 2009 Applied Physics B 96 527

    [17]

    Ning Y, Yu H, Zhou H, Rao C H, Jiang W H 2009 Acta Phys. Sin. 58 4717 (in Chinese) [宁禹, 余浩, 周虹, 饶长辉, 姜文汉 2009 物理学报 58 4717]

    [18]

    Noll R J 1976 J. Opt. Soc. Am. A 66 207

  • [1]

    Jiang W H, Zhang Y D, Rao C H, Ling N, Guan C L, Li M, Yang Z P, Shi G H 2011 Acta Optica Sinaca 31 9 (in Chinese) [姜文汉, 张雨东, 饶长辉, 凌宁, 官春林, 李梅, 杨泽平, 史国华 2011 光学学报 31 9]

    [2]

    Jiang W H 2006 Chinese Journal of Nature 28 1 (in Chinese) [姜文汉 2006 中国自然杂志 28 1]

    [3]

    Zhang L Q, Gu N T, Rao C H 2013 Acta. Phys. Sin. 62 169501 (in Chinese) [张兰强, 顾乃庭, 饶长辉 2013 物理学报 62 169501]

    [4]

    Ren Z J, Liang X Y, Liu M B, Xia C Q, Lu X M, Li R X, Xu Z Z 2009 Chin. Phys. Lett. 26 124203

    [5]

    Yu L H, Liang X Y, Ren Z J, Wang L, Xu Y, Lu X M, Yu G T 2012 Chin. Phys. B 21 014201

    [6]

    Li X Y, Jiang W H 2003 Acta Optica Sinaca 23 6 (in Chinese) [李新阳, 姜文汉 2003 光学学报 23 6]

    [7]

    Jiang W H, Li H G 1990 Proc. SPIE The Hague, Netherlands, March 01, 1990 p82

    [8]

    Feng L, Fedrigo E, Bechet C 2012 Applied Optics 51 3564

    [9]

    Antonin H B 2010 Proc. SPIE San Diego, CA, August 02, 2009 p1

    [10]

    Luc G, Curtis R, Vogel, Brent L 2002 J. Opt. Soc. Am. A 19 1817

    [11]

    Eric T, Michel T 2010 J. Opt. Soc. Am. A 27 1046

    [12]

    Cheng S Y, Chen S Q, Dong L Z, Liu W J, Wang S, Yang P, Ao M W, Xu B 2014 Acta Phys. Sin. 63 074206 (in Chinese) [程生毅, 陈善球, 董理治, 刘文劲, 王帅, 杨平, 敖明武, 许冰 2014 物理学报 63 074206]

    [13]

    Zhu Y G 2010 Matrix Analysis and Calculation (Beijing: National Defense Industry Press) pp160-183 (in Chinese) [朱元国 2010 矩阵分析与计算(北京: 国防工业出版社)第160-183页]

    [14]

    Curtis R V 2004 Proc. of SPIE Bellingham WA, June 21, 2004 p1327

    [15]

    John M C, John G 2004 Science, The International Journal of High Performance Computing Applications 18 225

    [16]

    Dong L Z, Yang P, Xu B 2009 Applied Physics B 96 527

    [17]

    Ning Y, Yu H, Zhou H, Rao C H, Jiang W H 2009 Acta Phys. Sin. 58 4717 (in Chinese) [宁禹, 余浩, 周虹, 饶长辉, 姜文汉 2009 物理学报 58 4717]

    [18]

    Noll R J 1976 J. Opt. Soc. Am. A 66 207

  • [1] 陈博, 汪宏年, 杨守文, 殷长春. 海洋可控源三维电磁响应显式灵敏度矩阵的快速算法. 物理学报, 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [2] 王仲根, 沐俊文, 林涵, 聂文艳. 新型缩减矩阵构造加快特征基函数法迭代求解. 物理学报, 2019, 68(17): 170201. doi: 10.7498/aps.68.20190572
    [3] 焦宝宝. 用重正交化Lanczos法求解大型非正交归一基稀疏矩阵的特征值问题. 物理学报, 2016, 65(19): 192101. doi: 10.7498/aps.65.192101
    [4] 陈典兵, 朱明, 高文, 王慧利, 杨航. 基于残差矩阵估计的稀疏表示目标跟踪算法. 物理学报, 2016, 65(19): 194201. doi: 10.7498/aps.65.194201
    [5] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [6] 韩华, 吴翎燕, 宋宁宁. 基于随机矩阵的金融网络模型. 物理学报, 2014, 63(13): 138901. doi: 10.7498/aps.63.138901
    [7] 郭友明, 饶长辉, 鲍华, 张昂, 魏凯. 一种自适应光学系统响应矩阵的直接计算方法. 物理学报, 2014, 63(14): 149501. doi: 10.7498/aps.63.149501
    [8] 林立雄, 彭侠夫. 基于函数矩阵的一类混沌系统同步. 物理学报, 2014, 63(8): 080504. doi: 10.7498/aps.63.080504
    [9] 程生毅, 陈善球, 董理治, 刘文劲, 王帅, 杨平, 敖明武, 许冰. 交连值对斜率响应矩阵和迭代矩阵稀疏度的影响. 物理学报, 2014, 63(7): 074206. doi: 10.7498/aps.63.074206
    [10] 刘晓丽, 冯国英, 李玮, 唐淳, 周寿桓. 像散椭圆高斯光束的M2因子矩阵的理论与实验研究. 物理学报, 2013, 62(19): 194202. doi: 10.7498/aps.62.194202
    [11] 马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳. 基于主成分变换的图像稀疏度估计方法. 物理学报, 2013, 62(20): 204202. doi: 10.7498/aps.62.204202
    [12] 周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜. 利用重要度评价矩阵确定复杂网络关键节点. 物理学报, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [13] 姬伟杰, 童创明. 三维目标与粗糙面复合散射的广义稀疏矩阵平面迭代及规范网格算法. 物理学报, 2011, 60(1): 010301. doi: 10.7498/aps.60.010301
    [14] 王云江, 白宝明, 王新梅. 量子稀疏图码的反馈式迭代译码. 物理学报, 2010, 59(11): 7591-7595. doi: 10.7498/aps.59.7591
    [15] 李玮, 陈建国, 冯国英, 黄宇, 李刚, 谢旭东, 杨火木, 周寿桓. 厄米-高斯光束的M2因子矩阵. 物理学报, 2009, 58(4): 2461-2466. doi: 10.7498/aps.58.2461
    [16] 徐秀玮, 赵继德, 任廷琦. 多维相空间中任意指数二次型算符的矩阵元. 物理学报, 2000, 49(1): 17-19. doi: 10.7498/aps.49.17
    [17] 李晓梅, 陈健华. 等价电子耦合波函数的构造和矩阵元计算. 物理学报, 1999, 48(9): 1593-1600. doi: 10.7498/aps.48.1593
    [18] 沈康民, 丁月明. 列阵的矩阵及其光学性质. 物理学报, 1993, 42(9): 1522-1528. doi: 10.7498/aps.42.1522
    [19] 肖奕. 孤子方程求解的投影矩阵法. 物理学报, 1989, 38(12): 1911-1918. doi: 10.7498/aps.38.1911
    [20] 徐至中, 谢希德. 空间羣算符的矩阵元. 物理学报, 1965, 21(4): 802-816. doi: 10.7498/aps.21.802
计量
  • 文章访问数:  3409
  • PDF下载量:  679
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-08
  • 修回日期:  2014-11-12
  • 刊出日期:  2015-05-05

变形镜高斯函数指数对迭代法自适应光学系统的影响

  • 1. 中国科学院光电技术研究所, 成都 610209;
  • 2. 中国科学院大学, 北京 100049;
  • 3. 中国科学院自适应光学重点实验室, 成都 610209;
  • 4. 电子科技大学, 成都 610054
    基金项目: 国家重大科研装备研制项目(批准号: ZDYZ2013-2)、国家自然科学基金(批准号: 11173008)和四川省杰出青年学术技术带头人资助计划(批准号: 2012JQ0012)资助的课题.

摘要: 基于613单元自适应光学系统, 描述了迭代矩阵和斜率响应矩阵的特性. 在变形镜驱动器间距和交连值不变的情况下, 研究了变形镜高斯函数指数对迭代矩阵和斜率响应矩阵稀疏度的影响, 对自适应光学系统稳定性和校正能力的影响. 研究表明, 迭代矩阵和斜率响应矩阵的稀疏度随着变形镜高斯函数指数的增大而减小. 高斯函数指数过大或者过小都会影响自适应光学系统的稳定性和校正能力. 最后, 综合迭代矩阵和斜率响应矩阵的稀疏度、自适应光学系统的稳定性和校正能力, 给出了合理的变形镜高斯函数指数的取值范围.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回